Yijie Jiang, John J Bradshaw, Roshan Sharma, Rong Z Gan
{"title":"人耳声波传入耳蜗及毛细胞疲劳失效的多尺度有限元模拟。","authors":"Yijie Jiang, John J Bradshaw, Roshan Sharma, Rong Z Gan","doi":"10.1115/1.4067577","DOIUrl":null,"url":null,"abstract":"<p><p>Hearing loss is highly related to acoustic injuries and mechanical damage of ear tissues. The mechanical responses and failures of ear tissues are difficult to measure experimentally, especially cochlear hair cells within the organ of Corti (OC) at microscale. Finite element (FE) modeling has become an important tool for simulating acoustic wave transmission and studying cochlear mechanics. This study harnessed a multiscale FE model to investigate the mechanical behaviors of ear tissues in response to acoustic wave and developed a fatigue mechanical model to describe the outer hair cells (OHCs) failure. A three-dimensional (3D) multiscale FE model consisting of a macroscale model of the ear canal, middle ear, and three-chambered cochlea and a microscale OC model on a representative basilar membrane section, including the hair cells, membranes, and supporting cells, was established. Harmonic acoustic mode was used in the FE model for simulating various acoustic pressures and frequencies. The cochlear basilar membrane and the cochlear pressure induced by acoustic pressures were derived from the macroscale model and used as inputs for microscale OC model. The OC model identified the stress and strain concentrations in the reticular lamina (RL) at the root of stereocilia hair bundles and in the Deiter's cells at the connecting ends with OHCs, indicating the potential mechanical damage sites. OHCs were under cyclic loading and the alternating stress was quantified by the FE model. A fatigue mechanism for OHCs was established based on the modeling results and experimental data. This mechanism would be used for predicting fatigue failure and the resulting hearing loss.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Finite Element Modeling of Human Ear for Acoustic Wave Transmission Into Cochlea and Hair Cells Fatigue Failure.\",\"authors\":\"Yijie Jiang, John J Bradshaw, Roshan Sharma, Rong Z Gan\",\"doi\":\"10.1115/1.4067577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hearing loss is highly related to acoustic injuries and mechanical damage of ear tissues. The mechanical responses and failures of ear tissues are difficult to measure experimentally, especially cochlear hair cells within the organ of Corti (OC) at microscale. Finite element (FE) modeling has become an important tool for simulating acoustic wave transmission and studying cochlear mechanics. This study harnessed a multiscale FE model to investigate the mechanical behaviors of ear tissues in response to acoustic wave and developed a fatigue mechanical model to describe the outer hair cells (OHCs) failure. A three-dimensional (3D) multiscale FE model consisting of a macroscale model of the ear canal, middle ear, and three-chambered cochlea and a microscale OC model on a representative basilar membrane section, including the hair cells, membranes, and supporting cells, was established. Harmonic acoustic mode was used in the FE model for simulating various acoustic pressures and frequencies. The cochlear basilar membrane and the cochlear pressure induced by acoustic pressures were derived from the macroscale model and used as inputs for microscale OC model. The OC model identified the stress and strain concentrations in the reticular lamina (RL) at the root of stereocilia hair bundles and in the Deiter's cells at the connecting ends with OHCs, indicating the potential mechanical damage sites. OHCs were under cyclic loading and the alternating stress was quantified by the FE model. A fatigue mechanism for OHCs was established based on the modeling results and experimental data. This mechanism would be used for predicting fatigue failure and the resulting hearing loss.</p>\",\"PeriodicalId\":54871,\"journal\":{\"name\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4067577\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4067577","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Multiscale Finite Element Modeling of Human Ear for Acoustic Wave Transmission Into Cochlea and Hair Cells Fatigue Failure.
Hearing loss is highly related to acoustic injuries and mechanical damage of ear tissues. The mechanical responses and failures of ear tissues are difficult to measure experimentally, especially cochlear hair cells within the organ of Corti (OC) at microscale. Finite element (FE) modeling has become an important tool for simulating acoustic wave transmission and studying cochlear mechanics. This study harnessed a multiscale FE model to investigate the mechanical behaviors of ear tissues in response to acoustic wave and developed a fatigue mechanical model to describe the outer hair cells (OHCs) failure. A three-dimensional (3D) multiscale FE model consisting of a macroscale model of the ear canal, middle ear, and three-chambered cochlea and a microscale OC model on a representative basilar membrane section, including the hair cells, membranes, and supporting cells, was established. Harmonic acoustic mode was used in the FE model for simulating various acoustic pressures and frequencies. The cochlear basilar membrane and the cochlear pressure induced by acoustic pressures were derived from the macroscale model and used as inputs for microscale OC model. The OC model identified the stress and strain concentrations in the reticular lamina (RL) at the root of stereocilia hair bundles and in the Deiter's cells at the connecting ends with OHCs, indicating the potential mechanical damage sites. OHCs were under cyclic loading and the alternating stress was quantified by the FE model. A fatigue mechanism for OHCs was established based on the modeling results and experimental data. This mechanism would be used for predicting fatigue failure and the resulting hearing loss.
期刊介绍:
Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.