Mohd Munazzer Ansari, Shailendra Kumar, Md Belal Bin Heyat, Hadaate Ullah, Mohd Ammar Bin Hayat, Sumbul, Saba Parveen, Ahmad Ali, Tao Zhang
{"title":"基于支持向量机和VGGNet-16的肺癌检测新方法","authors":"Mohd Munazzer Ansari, Shailendra Kumar, Md Belal Bin Heyat, Hadaate Ullah, Mohd Ammar Bin Hayat, Sumbul, Saba Parveen, Ahmad Ali, Tao Zhang","doi":"10.2174/0115734056348824241224100809","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Lung cancer remains a leading cause of cancer-related mortality worldwide, necessitating early and accurate detection methods. Our study aims to enhance lung cancer detection by integrating VGGNet-16 form of Convolutional Neural Networks (CNNs) and Support Vector Machines (SVM) into a hybrid model (SVMVGGNet-16), leveraging the strengths of both models for high accuracy and reliability in classifying lung cancer types in different 4 classes such as adenocarcinoma (ADC), large cell carcinoma (LCC), Normal, and squamous cell carcinoma (SCC).</p><p><strong>Methods: </strong>Using the LIDC-IDRI dataset, we pre-processed images with a median filter and histogram equalization, segmented lung tumors through thresholding and edge detection, and extracted geometric features such as area, perimeter, eccentricity, compactness, and circularity. VGGNet-16 and SVM employed for feature extraction and classification, respectively. Performance matrices were evaluated using accuracy, AUC, recall, precision, and F1-score. Both VGGNet-16 and SVM underwent comparative analysis during the training, validation, and testing phases.</p><p><strong>Results: </strong>The SVMVGGNet-16 model outperformed both, with a training accuracy (97.22%), AUC (99.42%), recall (94.22%), precision (95.28%), and F1- score (94.68%). In testing, our SVMVGGNet-16 model maintained high accuracy (96.72%), with an AUC (96.87%), recall (84.67%), precision (87.40%), and F1-score (85.73%).</p><p><strong>Conclusion: </strong>Our experimental results demonstrate the potential of SVMVGGNet-16 in improving diagnostic performance, leading to earlier detection and better treatment outcomes. Future work includes refining the model, expanding datasets, conducting clinical trials, and integrating the system into clinical practice to ensure practical usability.</p>","PeriodicalId":54215,"journal":{"name":"Current Medical Imaging Reviews","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SVMVGGNet-16: A Novel Machine and Deep Learning Based Approaches for Lung Cancer Detection Using Combined SVM and VGGNet-16.\",\"authors\":\"Mohd Munazzer Ansari, Shailendra Kumar, Md Belal Bin Heyat, Hadaate Ullah, Mohd Ammar Bin Hayat, Sumbul, Saba Parveen, Ahmad Ali, Tao Zhang\",\"doi\":\"10.2174/0115734056348824241224100809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objective: </strong>Lung cancer remains a leading cause of cancer-related mortality worldwide, necessitating early and accurate detection methods. Our study aims to enhance lung cancer detection by integrating VGGNet-16 form of Convolutional Neural Networks (CNNs) and Support Vector Machines (SVM) into a hybrid model (SVMVGGNet-16), leveraging the strengths of both models for high accuracy and reliability in classifying lung cancer types in different 4 classes such as adenocarcinoma (ADC), large cell carcinoma (LCC), Normal, and squamous cell carcinoma (SCC).</p><p><strong>Methods: </strong>Using the LIDC-IDRI dataset, we pre-processed images with a median filter and histogram equalization, segmented lung tumors through thresholding and edge detection, and extracted geometric features such as area, perimeter, eccentricity, compactness, and circularity. VGGNet-16 and SVM employed for feature extraction and classification, respectively. Performance matrices were evaluated using accuracy, AUC, recall, precision, and F1-score. Both VGGNet-16 and SVM underwent comparative analysis during the training, validation, and testing phases.</p><p><strong>Results: </strong>The SVMVGGNet-16 model outperformed both, with a training accuracy (97.22%), AUC (99.42%), recall (94.22%), precision (95.28%), and F1- score (94.68%). In testing, our SVMVGGNet-16 model maintained high accuracy (96.72%), with an AUC (96.87%), recall (84.67%), precision (87.40%), and F1-score (85.73%).</p><p><strong>Conclusion: </strong>Our experimental results demonstrate the potential of SVMVGGNet-16 in improving diagnostic performance, leading to earlier detection and better treatment outcomes. Future work includes refining the model, expanding datasets, conducting clinical trials, and integrating the system into clinical practice to ensure practical usability.</p>\",\"PeriodicalId\":54215,\"journal\":{\"name\":\"Current Medical Imaging Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Medical Imaging Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734056348824241224100809\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Imaging Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734056348824241224100809","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
SVMVGGNet-16: A Novel Machine and Deep Learning Based Approaches for Lung Cancer Detection Using Combined SVM and VGGNet-16.
Background and objective: Lung cancer remains a leading cause of cancer-related mortality worldwide, necessitating early and accurate detection methods. Our study aims to enhance lung cancer detection by integrating VGGNet-16 form of Convolutional Neural Networks (CNNs) and Support Vector Machines (SVM) into a hybrid model (SVMVGGNet-16), leveraging the strengths of both models for high accuracy and reliability in classifying lung cancer types in different 4 classes such as adenocarcinoma (ADC), large cell carcinoma (LCC), Normal, and squamous cell carcinoma (SCC).
Methods: Using the LIDC-IDRI dataset, we pre-processed images with a median filter and histogram equalization, segmented lung tumors through thresholding and edge detection, and extracted geometric features such as area, perimeter, eccentricity, compactness, and circularity. VGGNet-16 and SVM employed for feature extraction and classification, respectively. Performance matrices were evaluated using accuracy, AUC, recall, precision, and F1-score. Both VGGNet-16 and SVM underwent comparative analysis during the training, validation, and testing phases.
Results: The SVMVGGNet-16 model outperformed both, with a training accuracy (97.22%), AUC (99.42%), recall (94.22%), precision (95.28%), and F1- score (94.68%). In testing, our SVMVGGNet-16 model maintained high accuracy (96.72%), with an AUC (96.87%), recall (84.67%), precision (87.40%), and F1-score (85.73%).
Conclusion: Our experimental results demonstrate the potential of SVMVGGNet-16 in improving diagnostic performance, leading to earlier detection and better treatment outcomes. Future work includes refining the model, expanding datasets, conducting clinical trials, and integrating the system into clinical practice to ensure practical usability.
期刊介绍:
Current Medical Imaging Reviews publishes frontier review articles, original research articles, drug clinical trial studies and guest edited thematic issues on all the latest advances on medical imaging dedicated to clinical research. All relevant areas are covered by the journal, including advances in the diagnosis, instrumentation and therapeutic applications related to all modern medical imaging techniques.
The journal is essential reading for all clinicians and researchers involved in medical imaging and diagnosis.