David B Olawade, Sheila Marinze, Nabeel Qureshi, Kusal Weerasinghe, Jennifer Teke
{"title":"人工智能和机器学习在器官检索和移植中的影响:综述。","authors":"David B Olawade, Sheila Marinze, Nabeel Qureshi, Kusal Weerasinghe, Jennifer Teke","doi":"10.1016/j.retram.2025.103493","DOIUrl":null,"url":null,"abstract":"<p><p>This narrative review examines the transformative role of Artificial Intelligence (AI) and Machine Learning (ML) in organ retrieval and transplantation. AI and ML technologies enhance donor-recipient matching by integrating and analyzing complex datasets encompassing clinical, genetic, and demographic information, leading to more precise organ allocation and improved transplant success rates. In surgical planning, AI-driven image analysis automates organ segmentation, identifies critical anatomical features, and predicts surgical outcomes, aiding pre-operative planning and reducing intraoperative risks. Predictive analytics further enable personalized treatment plans by forecasting organ rejection, infection risks, and patient recovery trajectories, thereby supporting early intervention strategies and long-term patient management. AI also optimizes operational efficiency within transplant centers by predicting organ demand, scheduling surgeries efficiently, and managing inventory to minimize wastage, thus streamlining workflows and enhancing resource allocation. Despite these advancements, several challenges hinder the widespread adoption of AI and ML in organ transplantation. These include data privacy concerns, regulatory compliance issues, interoperability across healthcare systems, and the need for rigorous clinical validation of AI models. Addressing these challenges is essential to ensuring the reliable, safe, and ethical use of AI in clinical settings. Future directions for AI and ML in transplantation medicine include integrating genomic data for precision immunosuppression, advancing robotic surgery for minimally invasive procedures, and developing AI-driven remote monitoring systems for continuous post-transplantation care. Collaborative efforts among clinicians, researchers, and policymakers are crucial to harnessing the full potential of AI and ML, ultimately transforming transplantation medicine and improving patient outcomes while enhancing healthcare delivery efficiency.</p>","PeriodicalId":54260,"journal":{"name":"Current Research in Translational Medicine","volume":" ","pages":"103493"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of artificial intelligence and machine learning in organ retrieval and transplantation: A comprehensive review.\",\"authors\":\"David B Olawade, Sheila Marinze, Nabeel Qureshi, Kusal Weerasinghe, Jennifer Teke\",\"doi\":\"10.1016/j.retram.2025.103493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This narrative review examines the transformative role of Artificial Intelligence (AI) and Machine Learning (ML) in organ retrieval and transplantation. AI and ML technologies enhance donor-recipient matching by integrating and analyzing complex datasets encompassing clinical, genetic, and demographic information, leading to more precise organ allocation and improved transplant success rates. In surgical planning, AI-driven image analysis automates organ segmentation, identifies critical anatomical features, and predicts surgical outcomes, aiding pre-operative planning and reducing intraoperative risks. Predictive analytics further enable personalized treatment plans by forecasting organ rejection, infection risks, and patient recovery trajectories, thereby supporting early intervention strategies and long-term patient management. AI also optimizes operational efficiency within transplant centers by predicting organ demand, scheduling surgeries efficiently, and managing inventory to minimize wastage, thus streamlining workflows and enhancing resource allocation. Despite these advancements, several challenges hinder the widespread adoption of AI and ML in organ transplantation. These include data privacy concerns, regulatory compliance issues, interoperability across healthcare systems, and the need for rigorous clinical validation of AI models. Addressing these challenges is essential to ensuring the reliable, safe, and ethical use of AI in clinical settings. Future directions for AI and ML in transplantation medicine include integrating genomic data for precision immunosuppression, advancing robotic surgery for minimally invasive procedures, and developing AI-driven remote monitoring systems for continuous post-transplantation care. Collaborative efforts among clinicians, researchers, and policymakers are crucial to harnessing the full potential of AI and ML, ultimately transforming transplantation medicine and improving patient outcomes while enhancing healthcare delivery efficiency.</p>\",\"PeriodicalId\":54260,\"journal\":{\"name\":\"Current Research in Translational Medicine\",\"volume\":\" \",\"pages\":\"103493\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.retram.2025.103493\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.retram.2025.103493","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
The impact of artificial intelligence and machine learning in organ retrieval and transplantation: A comprehensive review.
This narrative review examines the transformative role of Artificial Intelligence (AI) and Machine Learning (ML) in organ retrieval and transplantation. AI and ML technologies enhance donor-recipient matching by integrating and analyzing complex datasets encompassing clinical, genetic, and demographic information, leading to more precise organ allocation and improved transplant success rates. In surgical planning, AI-driven image analysis automates organ segmentation, identifies critical anatomical features, and predicts surgical outcomes, aiding pre-operative planning and reducing intraoperative risks. Predictive analytics further enable personalized treatment plans by forecasting organ rejection, infection risks, and patient recovery trajectories, thereby supporting early intervention strategies and long-term patient management. AI also optimizes operational efficiency within transplant centers by predicting organ demand, scheduling surgeries efficiently, and managing inventory to minimize wastage, thus streamlining workflows and enhancing resource allocation. Despite these advancements, several challenges hinder the widespread adoption of AI and ML in organ transplantation. These include data privacy concerns, regulatory compliance issues, interoperability across healthcare systems, and the need for rigorous clinical validation of AI models. Addressing these challenges is essential to ensuring the reliable, safe, and ethical use of AI in clinical settings. Future directions for AI and ML in transplantation medicine include integrating genomic data for precision immunosuppression, advancing robotic surgery for minimally invasive procedures, and developing AI-driven remote monitoring systems for continuous post-transplantation care. Collaborative efforts among clinicians, researchers, and policymakers are crucial to harnessing the full potential of AI and ML, ultimately transforming transplantation medicine and improving patient outcomes while enhancing healthcare delivery efficiency.
期刊介绍:
Current Research in Translational Medicine is a peer-reviewed journal, publishing worldwide clinical and basic research in the field of hematology, immunology, infectiology, hematopoietic cell transplantation, and cellular and gene therapy. The journal considers for publication English-language editorials, original articles, reviews, and short reports including case-reports. Contributions are intended to draw attention to experimental medicine and translational research. Current Research in Translational Medicine periodically publishes thematic issues and is indexed in all major international databases (2017 Impact Factor is 1.9).
Core areas covered in Current Research in Translational Medicine are:
Hematology,
Immunology,
Infectiology,
Hematopoietic,
Cell Transplantation,
Cellular and Gene Therapy.