Marina Cerqua, Marco Foiani, Carla Boccaccio, Paolo M Comoglio, Dogus M Altintas
{"title":"综合应激反应驱动MET癌基因在癌症中的过度表达。","authors":"Marina Cerqua, Marco Foiani, Carla Boccaccio, Paolo M Comoglio, Dogus M Altintas","doi":"10.1038/s44318-024-00338-4","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer cells rely on invasive growth to survive in a hostile microenvironment; this growth is characterised by interconnected processes such as epithelial-to-mesenchymal transition and migration. A master regulator of these events is the MET oncogene, which is overexpressed in the majority of cancers; however, since mutations in the MET oncogene are seen only rarely in cancers and are relatively infrequent, the mechanisms that cause this widespread MET overexpression remain obscure. Here, we show that the 5' untranslated region (5'UTR) of MET mRNA harbours two functional stress-responsive elements, conferring translational regulation by the integrated stress response (ISR), regulated by phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) at serine 52. ISR activation by serum starvation, leucine deprivation, hypoxia, irradiation, thapsigargin or gemcitabine is followed by MET protein overexpression. We mechanistically link MET translation to the ISR by (i) mutation of the two uORFs within the MET 5'UTR, (ii) CRISPR/Cas9-mediated mutation of eIF2α (S52A), or (iii) the application of ISR pathway inhibitors. All of these interventions reduce stress-induced MET overexpression. Finally, we show that blocking stress-induced MET translation blunts MET-dependent invasive growth. These findings indicate that upregulation of the MET oncogene is a functional requirement linking integrated stress response to cancer progression.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"1107-1130"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832788/pdf/","citationCount":"0","resultStr":"{\"title\":\"The integrated stress response drives MET oncogene overexpression in cancers.\",\"authors\":\"Marina Cerqua, Marco Foiani, Carla Boccaccio, Paolo M Comoglio, Dogus M Altintas\",\"doi\":\"10.1038/s44318-024-00338-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer cells rely on invasive growth to survive in a hostile microenvironment; this growth is characterised by interconnected processes such as epithelial-to-mesenchymal transition and migration. A master regulator of these events is the MET oncogene, which is overexpressed in the majority of cancers; however, since mutations in the MET oncogene are seen only rarely in cancers and are relatively infrequent, the mechanisms that cause this widespread MET overexpression remain obscure. Here, we show that the 5' untranslated region (5'UTR) of MET mRNA harbours two functional stress-responsive elements, conferring translational regulation by the integrated stress response (ISR), regulated by phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) at serine 52. ISR activation by serum starvation, leucine deprivation, hypoxia, irradiation, thapsigargin or gemcitabine is followed by MET protein overexpression. We mechanistically link MET translation to the ISR by (i) mutation of the two uORFs within the MET 5'UTR, (ii) CRISPR/Cas9-mediated mutation of eIF2α (S52A), or (iii) the application of ISR pathway inhibitors. All of these interventions reduce stress-induced MET overexpression. Finally, we show that blocking stress-induced MET translation blunts MET-dependent invasive growth. These findings indicate that upregulation of the MET oncogene is a functional requirement linking integrated stress response to cancer progression.</p>\",\"PeriodicalId\":50533,\"journal\":{\"name\":\"EMBO Journal\",\"volume\":\" \",\"pages\":\"1107-1130\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832788/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44318-024-00338-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-024-00338-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
癌细胞依靠侵袭性生长在恶劣的微环境中生存;这种生长的特点是相互关联的过程,如上皮细胞到间质细胞的转变和迁移。这些事件的主要调控因子是MET癌基因,它在大多数癌症中过度表达;然而,由于MET致癌基因的突变在癌症中很少出现,而且相对不常见,导致这种广泛的MET过表达的机制仍然不清楚。在这里,我们发现MET mRNA的5‘非翻译区(5’ utr)包含两个功能的应激响应元件,通过真核翻译起始因子2α (eIF2α)丝氨酸52位点的磷酸化,通过综合应激反应(ISR)进行翻译调控。血清饥饿、亮氨酸剥夺、缺氧、辐照、萨普sigargin或吉西他滨激活ISR后,MET蛋白过表达。我们通过(i) MET 5'UTR内两个uorf的突变,(ii) CRISPR/ cas9介导的eIF2α (S52A)突变,或(iii) ISR途径抑制剂的应用,将MET翻译与ISR机制联系起来。所有这些干预措施都可以减少应激诱导的MET过表达。最后,我们发现阻断应激诱导的MET翻译会减弱MET依赖的侵袭性生长。这些发现表明MET癌基因的上调是一种功能需求,将综合应激反应与癌症进展联系起来。
The integrated stress response drives MET oncogene overexpression in cancers.
Cancer cells rely on invasive growth to survive in a hostile microenvironment; this growth is characterised by interconnected processes such as epithelial-to-mesenchymal transition and migration. A master regulator of these events is the MET oncogene, which is overexpressed in the majority of cancers; however, since mutations in the MET oncogene are seen only rarely in cancers and are relatively infrequent, the mechanisms that cause this widespread MET overexpression remain obscure. Here, we show that the 5' untranslated region (5'UTR) of MET mRNA harbours two functional stress-responsive elements, conferring translational regulation by the integrated stress response (ISR), regulated by phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) at serine 52. ISR activation by serum starvation, leucine deprivation, hypoxia, irradiation, thapsigargin or gemcitabine is followed by MET protein overexpression. We mechanistically link MET translation to the ISR by (i) mutation of the two uORFs within the MET 5'UTR, (ii) CRISPR/Cas9-mediated mutation of eIF2α (S52A), or (iii) the application of ISR pathway inhibitors. All of these interventions reduce stress-induced MET overexpression. Finally, we show that blocking stress-induced MET translation blunts MET-dependent invasive growth. These findings indicate that upregulation of the MET oncogene is a functional requirement linking integrated stress response to cancer progression.
期刊介绍:
The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance.
With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.