{"title":"基于深度学习的淋巴结转移状态预测肌肉浸润性膀胱癌的组织病理学预后。","authors":"Qingyuan Zheng, Panpan Jiao, Rui Yang, Junjie Fan, Yunxun Liu, Xiangxiang Yang, Jingping Yuan, Zhiyuan Chen, Xiuheng Liu","doi":"10.1007/s00345-025-05440-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop a deep learning (DL) model based on primary tumor tissue to predict the lymph node metastasis (LNM) status of muscle invasive bladder cancer (MIBC), while validating the prognostic value of the predicted aiN score in MIBC patients.</p><p><strong>Methods: </strong>A total of 323 patients from The Cancer Genome Atlas (TCGA) were used as the training and internal validation set, with image features extracted using a visual encoder called UNI. We investigated the ability to predict LNM status while assessing the prognostic value of aiN score. External validation was conducted on 139 patients from Renmin Hospital of Wuhan University (RHWU; Wuhan, China).</p><p><strong>Results: </strong>The DL model achieved area under the receiver operating characteristic curves of 0.79 (95% confidence interval [CI], 0.69-0.88) in the internal validation set for predicting LNM status, and 0.72 (95% CI, 0.68-0.75) in the external validation set. In multivariable Cox analysis, the model-predicted aiN score emerged as an independent predictor of survival for MIBC patients, with a hazard ratio of 1.608 (95% CI, 1.128-2.291; p = 0.008) in the TCGA cohort and 2.746 (95% CI, 1.486-5.076; p < 0.001) in the RHWU cohort. Additionally, the aiN score maintained prognostic value across different subgroups.</p><p><strong>Conclusion: </strong>In this study, DL-based image analysis showed promising results by directly extracting relevant prognostic information from H&E-stained histology to predict the LNM status of MIBC patients. It might be used for personalized management of MIBC patients following prospective validation in the future.</p>","PeriodicalId":23954,"journal":{"name":"World Journal of Urology","volume":"43 1","pages":"65"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based lymph node metastasis status predicts prognosis from muscle-invasive bladder cancer histopathology.\",\"authors\":\"Qingyuan Zheng, Panpan Jiao, Rui Yang, Junjie Fan, Yunxun Liu, Xiangxiang Yang, Jingping Yuan, Zhiyuan Chen, Xiuheng Liu\",\"doi\":\"10.1007/s00345-025-05440-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To develop a deep learning (DL) model based on primary tumor tissue to predict the lymph node metastasis (LNM) status of muscle invasive bladder cancer (MIBC), while validating the prognostic value of the predicted aiN score in MIBC patients.</p><p><strong>Methods: </strong>A total of 323 patients from The Cancer Genome Atlas (TCGA) were used as the training and internal validation set, with image features extracted using a visual encoder called UNI. We investigated the ability to predict LNM status while assessing the prognostic value of aiN score. External validation was conducted on 139 patients from Renmin Hospital of Wuhan University (RHWU; Wuhan, China).</p><p><strong>Results: </strong>The DL model achieved area under the receiver operating characteristic curves of 0.79 (95% confidence interval [CI], 0.69-0.88) in the internal validation set for predicting LNM status, and 0.72 (95% CI, 0.68-0.75) in the external validation set. In multivariable Cox analysis, the model-predicted aiN score emerged as an independent predictor of survival for MIBC patients, with a hazard ratio of 1.608 (95% CI, 1.128-2.291; p = 0.008) in the TCGA cohort and 2.746 (95% CI, 1.486-5.076; p < 0.001) in the RHWU cohort. Additionally, the aiN score maintained prognostic value across different subgroups.</p><p><strong>Conclusion: </strong>In this study, DL-based image analysis showed promising results by directly extracting relevant prognostic information from H&E-stained histology to predict the LNM status of MIBC patients. It might be used for personalized management of MIBC patients following prospective validation in the future.</p>\",\"PeriodicalId\":23954,\"journal\":{\"name\":\"World Journal of Urology\",\"volume\":\"43 1\",\"pages\":\"65\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Urology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00345-025-05440-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Urology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00345-025-05440-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
Deep learning-based lymph node metastasis status predicts prognosis from muscle-invasive bladder cancer histopathology.
Purpose: To develop a deep learning (DL) model based on primary tumor tissue to predict the lymph node metastasis (LNM) status of muscle invasive bladder cancer (MIBC), while validating the prognostic value of the predicted aiN score in MIBC patients.
Methods: A total of 323 patients from The Cancer Genome Atlas (TCGA) were used as the training and internal validation set, with image features extracted using a visual encoder called UNI. We investigated the ability to predict LNM status while assessing the prognostic value of aiN score. External validation was conducted on 139 patients from Renmin Hospital of Wuhan University (RHWU; Wuhan, China).
Results: The DL model achieved area under the receiver operating characteristic curves of 0.79 (95% confidence interval [CI], 0.69-0.88) in the internal validation set for predicting LNM status, and 0.72 (95% CI, 0.68-0.75) in the external validation set. In multivariable Cox analysis, the model-predicted aiN score emerged as an independent predictor of survival for MIBC patients, with a hazard ratio of 1.608 (95% CI, 1.128-2.291; p = 0.008) in the TCGA cohort and 2.746 (95% CI, 1.486-5.076; p < 0.001) in the RHWU cohort. Additionally, the aiN score maintained prognostic value across different subgroups.
Conclusion: In this study, DL-based image analysis showed promising results by directly extracting relevant prognostic information from H&E-stained histology to predict the LNM status of MIBC patients. It might be used for personalized management of MIBC patients following prospective validation in the future.
期刊介绍:
The WORLD JOURNAL OF UROLOGY conveys regularly the essential results of urological research and their practical and clinical relevance to a broad audience of urologists in research and clinical practice. In order to guarantee a balanced program, articles are published to reflect the developments in all fields of urology on an internationally advanced level. Each issue treats a main topic in review articles of invited international experts. Free papers are unrelated articles to the main topic.