基于F蛋白的重组蛋白免疫呼吸道合胞病毒的评价。

IF 1.5 4区 医学 Q4 IMMUNOLOGY
Viral immunology Pub Date : 2025-01-01 Epub Date: 2025-01-10 DOI:10.1089/vim.2024.0072
Alicia Hernández-Mercado, Claudia Berenice Barrón-García, Jayline Romo-Amador, Laura E Córdova-Dávalos, Mariela Jiménez, Julio C Fernández-Ruiz, Julio E Castañeda-Delgado, Roberto Montes de Oca-Luna, Eva Salinas, Daniel Cervantes-García
{"title":"基于F蛋白的重组蛋白免疫呼吸道合胞病毒的评价。","authors":"Alicia Hernández-Mercado, Claudia Berenice Barrón-García, Jayline Romo-Amador, Laura E Córdova-Dávalos, Mariela Jiménez, Julio C Fernández-Ruiz, Julio E Castañeda-Delgado, Roberto Montes de Oca-Luna, Eva Salinas, Daniel Cervantes-García","doi":"10.1089/vim.2024.0072","DOIUrl":null,"url":null,"abstract":"<p><p>Respiratory syncytial virus (RSV) is one of the most important etiologies of acute respiratory infections that cause bronchiolitis in children under 5 years of age. Treatments are expensive, no vaccine is available, and this is an important cause of hospitalization. Costimulatory molecules have been reported to be good inducers of antiviral type 1 immune response. This study aimed to generate a recombinant vaccine with the RSV F protein fused to 4-1BBL to evaluate the activation of an antiviral response <i>in vitro</i> and the production of neutralizing antibodies <i>in vivo</i>. The codon-optimized F gene was subcloned into an expression vector as follows: streptavidin core, gene F, and costimulatorytumor necrosis factor receptor superfamily member 9 -TNFRS9- ligand (4-1BBL). After the induction of expression in <i>Escherichia coli</i> C43, the recombinant protein (SA-F3x-4-1BBL, denominated SF4) was purified and verified by western blotting. Cultured RAW264.7 macrophages were stimulated with SF4 protein, then tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2), p38, and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) were analyzed by western blot, and mRNA cytokines were analyzed by RT-qPCR. Finally, male C57BL/6 mice were inoculated with SF4, and the generation of anti-RSV neutralizing antibodies and serum cytokines was examined. SF4 had a size of 84.4 kDa with a 5.6% yield. SA-F-4-1BBL upregulated TRAF2, TNF-α, and interferon (IFN)-γ expression levels and activated p38 mitogen-activated protein kinase and NF-κΒ pathways in RAW264.7 cells. Importantly, antibodies capable of neutralizing RSV infection and producing type 1 cytokines were detected in the sera of immunized animals. These results suggest that the fusion protein SF4 activates the 4-1BBL signaling pathway, resulting in an effective antiviral response mediated by neutralizing antibodies and antiviral cytokines.</p>","PeriodicalId":23665,"journal":{"name":"Viral immunology","volume":" ","pages":"23-33"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of an F Protein-Based Recombinant Protein for Immunization Against Respiratory Syncytial Virus.\",\"authors\":\"Alicia Hernández-Mercado, Claudia Berenice Barrón-García, Jayline Romo-Amador, Laura E Córdova-Dávalos, Mariela Jiménez, Julio C Fernández-Ruiz, Julio E Castañeda-Delgado, Roberto Montes de Oca-Luna, Eva Salinas, Daniel Cervantes-García\",\"doi\":\"10.1089/vim.2024.0072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Respiratory syncytial virus (RSV) is one of the most important etiologies of acute respiratory infections that cause bronchiolitis in children under 5 years of age. Treatments are expensive, no vaccine is available, and this is an important cause of hospitalization. Costimulatory molecules have been reported to be good inducers of antiviral type 1 immune response. This study aimed to generate a recombinant vaccine with the RSV F protein fused to 4-1BBL to evaluate the activation of an antiviral response <i>in vitro</i> and the production of neutralizing antibodies <i>in vivo</i>. The codon-optimized F gene was subcloned into an expression vector as follows: streptavidin core, gene F, and costimulatorytumor necrosis factor receptor superfamily member 9 -TNFRS9- ligand (4-1BBL). After the induction of expression in <i>Escherichia coli</i> C43, the recombinant protein (SA-F3x-4-1BBL, denominated SF4) was purified and verified by western blotting. Cultured RAW264.7 macrophages were stimulated with SF4 protein, then tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2), p38, and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) were analyzed by western blot, and mRNA cytokines were analyzed by RT-qPCR. Finally, male C57BL/6 mice were inoculated with SF4, and the generation of anti-RSV neutralizing antibodies and serum cytokines was examined. SF4 had a size of 84.4 kDa with a 5.6% yield. SA-F-4-1BBL upregulated TRAF2, TNF-α, and interferon (IFN)-γ expression levels and activated p38 mitogen-activated protein kinase and NF-κΒ pathways in RAW264.7 cells. Importantly, antibodies capable of neutralizing RSV infection and producing type 1 cytokines were detected in the sera of immunized animals. These results suggest that the fusion protein SF4 activates the 4-1BBL signaling pathway, resulting in an effective antiviral response mediated by neutralizing antibodies and antiviral cytokines.</p>\",\"PeriodicalId\":23665,\"journal\":{\"name\":\"Viral immunology\",\"volume\":\" \",\"pages\":\"23-33\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Viral immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/vim.2024.0072\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viral immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/vim.2024.0072","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/10 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

呼吸道合胞病毒(RSV)是引起5岁以下儿童毛细支气管炎的急性呼吸道感染的最重要病因之一。治疗费用昂贵,没有疫苗可用,这是住院治疗的一个重要原因。据报道,共刺激分子是抗病毒1型免疫反应的良好诱导剂。本研究旨在制备RSV F蛋白与4-1BBL融合的重组疫苗,以评估体外抗病毒反应的激活和体内中和抗体的产生。将密码子优化后的F基因亚克隆到链亲和素核心、F基因和共刺激肿瘤坏死因子受体超家族成员9- tnfrs9 -配体(4-1BBL)的表达载体中。在大肠杆菌C43中诱导表达后,纯化重组蛋白SA-F3x-4-1BBL,命名为SF4,并进行western blotting验证。用SF4蛋白刺激培养的RAW264.7巨噬细胞,western blot分析活化B细胞肿瘤坏死因子(TNF)受体相关因子2 (TRAF2)、p38、核因子κ-轻链增强子(NF-κB), RT-qPCR分析mRNA细胞因子。最后,用SF4接种雄性C57BL/6小鼠,检测抗rsv中和抗体和血清细胞因子的产生。SF4的大小为84.4 kDa,产率为5.6%。SA-F-4-1BBL上调RAW264.7细胞中TRAF2、TNF-α和干扰素(IFN)-γ的表达水平,激活p38丝裂原激活的蛋白激酶和NF-κΒ通路。重要的是,在免疫动物的血清中检测到能够中和RSV感染并产生1型细胞因子的抗体。这些结果表明,融合蛋白SF4激活4-1BBL信号通路,通过中和抗体和抗病毒细胞因子介导产生有效的抗病毒应答。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of an F Protein-Based Recombinant Protein for Immunization Against Respiratory Syncytial Virus.

Respiratory syncytial virus (RSV) is one of the most important etiologies of acute respiratory infections that cause bronchiolitis in children under 5 years of age. Treatments are expensive, no vaccine is available, and this is an important cause of hospitalization. Costimulatory molecules have been reported to be good inducers of antiviral type 1 immune response. This study aimed to generate a recombinant vaccine with the RSV F protein fused to 4-1BBL to evaluate the activation of an antiviral response in vitro and the production of neutralizing antibodies in vivo. The codon-optimized F gene was subcloned into an expression vector as follows: streptavidin core, gene F, and costimulatorytumor necrosis factor receptor superfamily member 9 -TNFRS9- ligand (4-1BBL). After the induction of expression in Escherichia coli C43, the recombinant protein (SA-F3x-4-1BBL, denominated SF4) was purified and verified by western blotting. Cultured RAW264.7 macrophages were stimulated with SF4 protein, then tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2), p38, and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) were analyzed by western blot, and mRNA cytokines were analyzed by RT-qPCR. Finally, male C57BL/6 mice were inoculated with SF4, and the generation of anti-RSV neutralizing antibodies and serum cytokines was examined. SF4 had a size of 84.4 kDa with a 5.6% yield. SA-F-4-1BBL upregulated TRAF2, TNF-α, and interferon (IFN)-γ expression levels and activated p38 mitogen-activated protein kinase and NF-κΒ pathways in RAW264.7 cells. Importantly, antibodies capable of neutralizing RSV infection and producing type 1 cytokines were detected in the sera of immunized animals. These results suggest that the fusion protein SF4 activates the 4-1BBL signaling pathway, resulting in an effective antiviral response mediated by neutralizing antibodies and antiviral cytokines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Viral immunology
Viral immunology 医学-病毒学
CiteScore
3.60
自引率
0.00%
发文量
84
审稿时长
6-12 weeks
期刊介绍: Viral Immunology delivers cutting-edge peer-reviewed research on rare, emerging, and under-studied viruses, with special focus on analyzing mutual relationships between external viruses and internal immunity. Original research, reviews, and commentaries on relevant viruses are presented in clinical, translational, and basic science articles for researchers in multiple disciplines. Viral Immunology coverage includes: Human and animal viral immunology Research and development of viral vaccines, including field trials Immunological characterization of viral components Virus-based immunological diseases, including autoimmune syndromes Pathogenic mechanisms Viral diagnostics Tumor and cancer immunology with virus as the primary factor Viral immunology methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信