紫檀芪对体外永生化脑内皮细胞系的脂多糖诱导炎症和血脑屏障破坏具有保护作用。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yan Zhou, Yifan Yang, Rui Tian, Wai San Cheang
{"title":"紫檀芪对体外永生化脑内皮细胞系的脂多糖诱导炎症和血脑屏障破坏具有保护作用。","authors":"Yan Zhou, Yifan Yang, Rui Tian, Wai San Cheang","doi":"10.1038/s41598-025-85144-6","DOIUrl":null,"url":null,"abstract":"<p><p>Brain microvascular endothelial cells are connected by tight junction (TJ) proteins and interacted by adhesion molecules, which participate in the selective permeability of the blood-brain barrier (BBB). The disruption of BBB is associated with the progression of cerebral diseases. Pterostilbene is a natural compound found in blueberries and grapes with a wide range of biological activities, including anti-inflammatory, antioxidant, and anti-diabetic effects. In this study, we investigated the protective effects of pterostilbene on LPS-stimulated mouse brain endothelial (bEnd.3) cells and underlying mechanisms. The results showed that pterostilbene effectively upregulated the expressions of tight junction (TJ) proteins such as zonula occludens (ZO)-1 and claudin-5 and downregulated the expression of adhesion molecules such as intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1, preventing BBB damage under LPS stimulation. Pterostilbene decreased the LPS-triggered expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 as well as the levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α and nitric oxide (NO). Meanwhile, we found that pterostilbene exerted an inhibitory effect on nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways in bEnd.3 cells upon LPS stimulation. Additionally, pterostilbene exhibited antioxidant effects by activating heme oxygenase 1 (HO-1). These findings indicated that pterostilbene protected against lipopolysaccharide (LPS)-induced inflammation, oxidative stress and blood-brain barrier (BBB) disruption in bEnd.3 cells.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"1542"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718003/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pterostilbene protects against lipopolysaccharide-induced inflammation and blood-brain barrier disruption in immortalized brain endothelial cell lines in vitro.\",\"authors\":\"Yan Zhou, Yifan Yang, Rui Tian, Wai San Cheang\",\"doi\":\"10.1038/s41598-025-85144-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain microvascular endothelial cells are connected by tight junction (TJ) proteins and interacted by adhesion molecules, which participate in the selective permeability of the blood-brain barrier (BBB). The disruption of BBB is associated with the progression of cerebral diseases. Pterostilbene is a natural compound found in blueberries and grapes with a wide range of biological activities, including anti-inflammatory, antioxidant, and anti-diabetic effects. In this study, we investigated the protective effects of pterostilbene on LPS-stimulated mouse brain endothelial (bEnd.3) cells and underlying mechanisms. The results showed that pterostilbene effectively upregulated the expressions of tight junction (TJ) proteins such as zonula occludens (ZO)-1 and claudin-5 and downregulated the expression of adhesion molecules such as intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1, preventing BBB damage under LPS stimulation. Pterostilbene decreased the LPS-triggered expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 as well as the levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α and nitric oxide (NO). Meanwhile, we found that pterostilbene exerted an inhibitory effect on nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways in bEnd.3 cells upon LPS stimulation. Additionally, pterostilbene exhibited antioxidant effects by activating heme oxygenase 1 (HO-1). These findings indicated that pterostilbene protected against lipopolysaccharide (LPS)-induced inflammation, oxidative stress and blood-brain barrier (BBB) disruption in bEnd.3 cells.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"1542\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718003/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-85144-6\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-85144-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

脑微血管内皮细胞通过紧密连接(TJ)蛋白连接,并通过粘附分子相互作用,参与血脑屏障(BBB)的选择性渗透。血脑屏障的破坏与脑疾病的进展有关。紫檀芪是一种在蓝莓和葡萄中发现的天然化合物,具有广泛的生物活性,包括抗炎、抗氧化和抗糖尿病作用。在这项研究中,我们研究了紫檀芪对lps刺激的小鼠脑内皮细胞(bEnd.3)的保护作用及其机制。结果表明,紫芪可有效上调闭塞带(ZO)-1、claudin-5等紧密连接(TJ)蛋白的表达,下调细胞间粘附分子(ICAM)-1、血管细胞粘附分子(VCAM)-1等粘附分子的表达,防止LPS刺激下血脑屏障损伤。紫檀芪可降低lps诱导的诱导型一氧化氮合酶(iNOS)、环氧合酶(COX)-2的表达以及白细胞介素(IL)-6、肿瘤坏死因子(TNF)-α和一氧化氮(NO)的水平。同时,我们发现紫菀芪对bEnd的核因子κB (NF-κB)和丝裂原活化蛋白激酶(MAPK)通路有抑制作用。LPS刺激3个细胞。此外,紫檀芪还通过激活血红素加氧酶1 (HO-1)发挥抗氧化作用。这些结果表明,紫檀芪对脂多糖(LPS)诱导的炎症、氧化应激和血脑屏障(BBB)破坏具有保护作用。3细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pterostilbene protects against lipopolysaccharide-induced inflammation and blood-brain barrier disruption in immortalized brain endothelial cell lines in vitro.

Brain microvascular endothelial cells are connected by tight junction (TJ) proteins and interacted by adhesion molecules, which participate in the selective permeability of the blood-brain barrier (BBB). The disruption of BBB is associated with the progression of cerebral diseases. Pterostilbene is a natural compound found in blueberries and grapes with a wide range of biological activities, including anti-inflammatory, antioxidant, and anti-diabetic effects. In this study, we investigated the protective effects of pterostilbene on LPS-stimulated mouse brain endothelial (bEnd.3) cells and underlying mechanisms. The results showed that pterostilbene effectively upregulated the expressions of tight junction (TJ) proteins such as zonula occludens (ZO)-1 and claudin-5 and downregulated the expression of adhesion molecules such as intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1, preventing BBB damage under LPS stimulation. Pterostilbene decreased the LPS-triggered expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 as well as the levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α and nitric oxide (NO). Meanwhile, we found that pterostilbene exerted an inhibitory effect on nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways in bEnd.3 cells upon LPS stimulation. Additionally, pterostilbene exhibited antioxidant effects by activating heme oxygenase 1 (HO-1). These findings indicated that pterostilbene protected against lipopolysaccharide (LPS)-induced inflammation, oxidative stress and blood-brain barrier (BBB) disruption in bEnd.3 cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信