{"title":"ALKBH5是一种m6A去甲基化酶,可减缓甲状腺乳头状癌的肿瘤生长并抑制转移。","authors":"Yong Zhuang, Qingyan Cai, Xin Hu, Huibin Huang","doi":"10.1038/s41598-024-84352-w","DOIUrl":null,"url":null,"abstract":"<p><p>The significance of ALKBH5 in erasing mRNA methylation in mRNA biogenesis, decay, and translation control has emerged as a prominent research focus. Additionally, ALKBH5 is associated with the development of numerous human cancers. However, it remains unclear whether ALKBH5 regulates the growth and metastasis of papillary thyroid carcinoma (PTC). Here, we compared cancer tissues and paracancerous tissues from PTC patients, along with cultured cells expressing ALKBH5 (overexpression, silent gene expression, normal stable expression). Our primary objective was to investigate the impact of ALKBH5 on PTC. Selected 30 cases of PTC tissues and their adjacent noncancerous tissues to compare the protein expression levels of ALKBH5 between the two groups using immunohistochemical analysis. qRT-PCR and western blot were used to detect the expression of ALKBH5 in normal thyroid follicular epithelial cells (Nthy-ori3-1) and 4 PTC cell lines (human PTC cell lines K1, BCPAP, IHH4, and TPC1). Appropriate cell lines were screened for subsequent experiments. Immunofluorescence staining was used to localize the high accumulation of ALKBH5 in cells. Construct the ALKBH5 knockdown vector and ALKBH5 overexpression vector separately, and construct the overexpression ALKBH5-mut vector with m6A domain mutation. The impact of different levels of ALKBH5 in the three cell lines on RNA m6A methylation levels was compared using qRT-PCR and western blot methods. Furthermore, cell viability was assessed using the CCK-8 assay, while the impact on cell proliferation was examined using plate colony formation assay. Cell invasion was evaluated using the Transwell assay. Immunohistochemical staining results showed that the expression of ALKBH5 protein in PTC cancer tissue was significantly lower than in adjacent non-cancerous tissue (P < 0.05). Lymph node metastasis in PTC patients may have been linked to ALKBH5 protein levels in their cancerous tissues (P = 0.034). The expression of ALKBH5 in PTC cell lines BCPAP, IHH4, and TPC1 was significantly lower than Nthy-ori3-1 (P < 0.05). IHH4 and TPC1 cell lines were selected for subsequent experiments. Immunofluorescence single staining results showed a high accumulation of ALKBH5 protein in the cell nucleus. Cell viability results suggested that compared to the overexpression-negative control group, cell proliferation, and invasion were significantly decreased in the ALKBH5 overexpression group (P < 0.05) and the mut-ALKBH5 overexpression group (P < 0.05). Additionally, compared to the ALKBH5 overexpression group, cell proliferation and invasion were significantly more decreased in the mut-ALKBH5 overexpression group (P < 0.05). However, compared to the interference-negative control group, cell proliferation and invasion were significantly increased in the ALKBH5 interference group (P < 0.05). The presented findings suggested that m6A demethylase ALKBH5 inhibits tumor growth and metastasis in PTC. Moreover, effective inhibition of m6A modification of ALKBH5 might constitute a potential treatment strategy for PTC.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"1514"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718269/pdf/","citationCount":"0","resultStr":"{\"title\":\"ALKBH5, an m6A demethylase, attenuates tumor growth and inhibits metastasis in papillary thyroid carcinoma.\",\"authors\":\"Yong Zhuang, Qingyan Cai, Xin Hu, Huibin Huang\",\"doi\":\"10.1038/s41598-024-84352-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The significance of ALKBH5 in erasing mRNA methylation in mRNA biogenesis, decay, and translation control has emerged as a prominent research focus. Additionally, ALKBH5 is associated with the development of numerous human cancers. However, it remains unclear whether ALKBH5 regulates the growth and metastasis of papillary thyroid carcinoma (PTC). Here, we compared cancer tissues and paracancerous tissues from PTC patients, along with cultured cells expressing ALKBH5 (overexpression, silent gene expression, normal stable expression). Our primary objective was to investigate the impact of ALKBH5 on PTC. Selected 30 cases of PTC tissues and their adjacent noncancerous tissues to compare the protein expression levels of ALKBH5 between the two groups using immunohistochemical analysis. qRT-PCR and western blot were used to detect the expression of ALKBH5 in normal thyroid follicular epithelial cells (Nthy-ori3-1) and 4 PTC cell lines (human PTC cell lines K1, BCPAP, IHH4, and TPC1). Appropriate cell lines were screened for subsequent experiments. Immunofluorescence staining was used to localize the high accumulation of ALKBH5 in cells. Construct the ALKBH5 knockdown vector and ALKBH5 overexpression vector separately, and construct the overexpression ALKBH5-mut vector with m6A domain mutation. The impact of different levels of ALKBH5 in the three cell lines on RNA m6A methylation levels was compared using qRT-PCR and western blot methods. Furthermore, cell viability was assessed using the CCK-8 assay, while the impact on cell proliferation was examined using plate colony formation assay. Cell invasion was evaluated using the Transwell assay. Immunohistochemical staining results showed that the expression of ALKBH5 protein in PTC cancer tissue was significantly lower than in adjacent non-cancerous tissue (P < 0.05). Lymph node metastasis in PTC patients may have been linked to ALKBH5 protein levels in their cancerous tissues (P = 0.034). The expression of ALKBH5 in PTC cell lines BCPAP, IHH4, and TPC1 was significantly lower than Nthy-ori3-1 (P < 0.05). IHH4 and TPC1 cell lines were selected for subsequent experiments. Immunofluorescence single staining results showed a high accumulation of ALKBH5 protein in the cell nucleus. Cell viability results suggested that compared to the overexpression-negative control group, cell proliferation, and invasion were significantly decreased in the ALKBH5 overexpression group (P < 0.05) and the mut-ALKBH5 overexpression group (P < 0.05). Additionally, compared to the ALKBH5 overexpression group, cell proliferation and invasion were significantly more decreased in the mut-ALKBH5 overexpression group (P < 0.05). However, compared to the interference-negative control group, cell proliferation and invasion were significantly increased in the ALKBH5 interference group (P < 0.05). The presented findings suggested that m6A demethylase ALKBH5 inhibits tumor growth and metastasis in PTC. Moreover, effective inhibition of m6A modification of ALKBH5 might constitute a potential treatment strategy for PTC.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"1514\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718269/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-84352-w\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-84352-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
ALKBH5, an m6A demethylase, attenuates tumor growth and inhibits metastasis in papillary thyroid carcinoma.
The significance of ALKBH5 in erasing mRNA methylation in mRNA biogenesis, decay, and translation control has emerged as a prominent research focus. Additionally, ALKBH5 is associated with the development of numerous human cancers. However, it remains unclear whether ALKBH5 regulates the growth and metastasis of papillary thyroid carcinoma (PTC). Here, we compared cancer tissues and paracancerous tissues from PTC patients, along with cultured cells expressing ALKBH5 (overexpression, silent gene expression, normal stable expression). Our primary objective was to investigate the impact of ALKBH5 on PTC. Selected 30 cases of PTC tissues and their adjacent noncancerous tissues to compare the protein expression levels of ALKBH5 between the two groups using immunohistochemical analysis. qRT-PCR and western blot were used to detect the expression of ALKBH5 in normal thyroid follicular epithelial cells (Nthy-ori3-1) and 4 PTC cell lines (human PTC cell lines K1, BCPAP, IHH4, and TPC1). Appropriate cell lines were screened for subsequent experiments. Immunofluorescence staining was used to localize the high accumulation of ALKBH5 in cells. Construct the ALKBH5 knockdown vector and ALKBH5 overexpression vector separately, and construct the overexpression ALKBH5-mut vector with m6A domain mutation. The impact of different levels of ALKBH5 in the three cell lines on RNA m6A methylation levels was compared using qRT-PCR and western blot methods. Furthermore, cell viability was assessed using the CCK-8 assay, while the impact on cell proliferation was examined using plate colony formation assay. Cell invasion was evaluated using the Transwell assay. Immunohistochemical staining results showed that the expression of ALKBH5 protein in PTC cancer tissue was significantly lower than in adjacent non-cancerous tissue (P < 0.05). Lymph node metastasis in PTC patients may have been linked to ALKBH5 protein levels in their cancerous tissues (P = 0.034). The expression of ALKBH5 in PTC cell lines BCPAP, IHH4, and TPC1 was significantly lower than Nthy-ori3-1 (P < 0.05). IHH4 and TPC1 cell lines were selected for subsequent experiments. Immunofluorescence single staining results showed a high accumulation of ALKBH5 protein in the cell nucleus. Cell viability results suggested that compared to the overexpression-negative control group, cell proliferation, and invasion were significantly decreased in the ALKBH5 overexpression group (P < 0.05) and the mut-ALKBH5 overexpression group (P < 0.05). Additionally, compared to the ALKBH5 overexpression group, cell proliferation and invasion were significantly more decreased in the mut-ALKBH5 overexpression group (P < 0.05). However, compared to the interference-negative control group, cell proliferation and invasion were significantly increased in the ALKBH5 interference group (P < 0.05). The presented findings suggested that m6A demethylase ALKBH5 inhibits tumor growth and metastasis in PTC. Moreover, effective inhibition of m6A modification of ALKBH5 might constitute a potential treatment strategy for PTC.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.