James R Whittle, Jurgen Kriel, Oluwaseun E Fatunla, Tianyao Lu, Joel J D Moffet, Montana Spiteri, Sarah A Best, Saskia Freytag
{"title":"空间组学揭示了胶质母细胞瘤的肿瘤组织。","authors":"James R Whittle, Jurgen Kriel, Oluwaseun E Fatunla, Tianyao Lu, Joel J D Moffet, Montana Spiteri, Sarah A Best, Saskia Freytag","doi":"10.1016/j.semcdb.2024.12.006","DOIUrl":null,"url":null,"abstract":"<p><p>The glioblastoma tumour microenvironment is characterised by immense heterogeneity, with malignant and non-malignant cells that interact in a complex ecosystem. Emerging evidence suggests that the tumour microenvironment is key in facilitating rapid proliferation, invasion, migration and cancer cell survival, crucial for treatment resistance. Spatial omics technologies have enabled the molecular characterisation of regions or individual cells within their spatial context, providing previously unattainable insights into the complex organisation of the glioblastoma tumour microenvironment. Understanding this organisation is crucial for the development of new therapeutics and novel diagnostic tools that guide patient care. This review explores spatial omics technologies and how they have contributed to the development of a model outlining the architecture of the glioblastoma tumour microenvironment.</p>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"167 ","pages":"1-9"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial omics shed light on the tumour organisation of glioblastoma.\",\"authors\":\"James R Whittle, Jurgen Kriel, Oluwaseun E Fatunla, Tianyao Lu, Joel J D Moffet, Montana Spiteri, Sarah A Best, Saskia Freytag\",\"doi\":\"10.1016/j.semcdb.2024.12.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The glioblastoma tumour microenvironment is characterised by immense heterogeneity, with malignant and non-malignant cells that interact in a complex ecosystem. Emerging evidence suggests that the tumour microenvironment is key in facilitating rapid proliferation, invasion, migration and cancer cell survival, crucial for treatment resistance. Spatial omics technologies have enabled the molecular characterisation of regions or individual cells within their spatial context, providing previously unattainable insights into the complex organisation of the glioblastoma tumour microenvironment. Understanding this organisation is crucial for the development of new therapeutics and novel diagnostic tools that guide patient care. This review explores spatial omics technologies and how they have contributed to the development of a model outlining the architecture of the glioblastoma tumour microenvironment.</p>\",\"PeriodicalId\":21735,\"journal\":{\"name\":\"Seminars in cell & developmental biology\",\"volume\":\"167 \",\"pages\":\"1-9\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in cell & developmental biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.semcdb.2024.12.006\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cell & developmental biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.semcdb.2024.12.006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Spatial omics shed light on the tumour organisation of glioblastoma.
The glioblastoma tumour microenvironment is characterised by immense heterogeneity, with malignant and non-malignant cells that interact in a complex ecosystem. Emerging evidence suggests that the tumour microenvironment is key in facilitating rapid proliferation, invasion, migration and cancer cell survival, crucial for treatment resistance. Spatial omics technologies have enabled the molecular characterisation of regions or individual cells within their spatial context, providing previously unattainable insights into the complex organisation of the glioblastoma tumour microenvironment. Understanding this organisation is crucial for the development of new therapeutics and novel diagnostic tools that guide patient care. This review explores spatial omics technologies and how they have contributed to the development of a model outlining the architecture of the glioblastoma tumour microenvironment.
期刊介绍:
Seminars in Cell and Developmental Biology is a review journal dedicated to keeping scientists informed of developments in the field of molecular cell and developmental biology, on a topic by topic basis. Each issue is thematic in approach, devoted to an important topic of interest to cell and developmental biologists, focusing on the latest advances and their specific implications.
The aim of each issue is to provide a coordinated, readable, and lively review of a selected area, published rapidly to ensure currency.