聚(l -赖氨酸)-嵌段-聚(乙二醇)-嵌段-聚(l -赖氨酸)三嵌段共聚物用于制备花胶束及其不可逆水凝胶的形成。

IF 7.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Science and Technology of Advanced Materials Pub Date : 2024-11-25 eCollection Date: 2025-01-01 DOI:10.1080/14686996.2024.2432856
Yuta Koda, Yukio Nagasaki
{"title":"聚(l -赖氨酸)-嵌段-聚(乙二醇)-嵌段-聚(l -赖氨酸)三嵌段共聚物用于制备花胶束及其不可逆水凝胶的形成。","authors":"Yuta Koda, Yukio Nagasaki","doi":"10.1080/14686996.2024.2432856","DOIUrl":null,"url":null,"abstract":"<p><p>Poly(<sub>L</sub>-lysine)-<i>block</i>-poly(ethylene glycol)-<i>block</i>-poly(<sub>L</sub>-lysine) (PLys-<i>block</i>-PEG-<i>block</i>-PLys) triblock copolymers formed polyion complex (PIC) with poly(acrylic acid) (PAAc) or sodium poly(styrenesulfonate) (PSS), leading to the formation of flower micelle-type nanoparticles (Nano<sup>Lys/PAAc</sup> or Nano<sup>Lys/PSS</sup>) with tens of nanometers size in water at a polymer concentration of 10 mg/mL. The flower micelles exhibited irreversible temperature-driven sol-gel transitions at physiological ionic strength, even at low polymer concentrations such as 40 mg/mL, making them promising candidates for injectable hydrogel applications. Rheological studies showed that the chain length of PLys segments and the choice of polyanions significantly impacted irreversible hydrogel formation, with PSS being superior to PAAc for the formation. The incorporation of silica gel nanoparticles into the PIC flower micelles also resulted in irreversible gelation phenomena. The highest storage modulus exceeded 10 kPa after gelation, which is sufficient for practical applications. This study demonstrates the potential of these PIC-based hydrogels as biomaterials with tunable properties for biomedical applications.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2432856"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703508/pdf/","citationCount":"0","resultStr":"{\"title\":\"Poly(<sub>L</sub>-lysine)-<i>block</i>-poly(ethylene glycol)-<i>block</i>-poly(<sub>L</sub>-lysine) triblock copolymers for the preparation of flower micelles and their irreversible hydrogel formation.\",\"authors\":\"Yuta Koda, Yukio Nagasaki\",\"doi\":\"10.1080/14686996.2024.2432856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Poly(<sub>L</sub>-lysine)-<i>block</i>-poly(ethylene glycol)-<i>block</i>-poly(<sub>L</sub>-lysine) (PLys-<i>block</i>-PEG-<i>block</i>-PLys) triblock copolymers formed polyion complex (PIC) with poly(acrylic acid) (PAAc) or sodium poly(styrenesulfonate) (PSS), leading to the formation of flower micelle-type nanoparticles (Nano<sup>Lys/PAAc</sup> or Nano<sup>Lys/PSS</sup>) with tens of nanometers size in water at a polymer concentration of 10 mg/mL. The flower micelles exhibited irreversible temperature-driven sol-gel transitions at physiological ionic strength, even at low polymer concentrations such as 40 mg/mL, making them promising candidates for injectable hydrogel applications. Rheological studies showed that the chain length of PLys segments and the choice of polyanions significantly impacted irreversible hydrogel formation, with PSS being superior to PAAc for the formation. The incorporation of silica gel nanoparticles into the PIC flower micelles also resulted in irreversible gelation phenomena. The highest storage modulus exceeded 10 kPa after gelation, which is sufficient for practical applications. This study demonstrates the potential of these PIC-based hydrogels as biomaterials with tunable properties for biomedical applications.</p>\",\"PeriodicalId\":21588,\"journal\":{\"name\":\"Science and Technology of Advanced Materials\",\"volume\":\"26 1\",\"pages\":\"2432856\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703508/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14686996.2024.2432856\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2432856","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

聚(l -赖氨酸)-嵌段-聚(乙二醇)-嵌段-聚(l -赖氨酸)(plys -嵌段- peg -嵌段- plys)三嵌段共聚物与聚丙烯酸(PAAc)或聚苯乙烯磺酸钠(PSS)形成聚络合物(PIC),在聚合物浓度为10 mg/mL的水中形成数十纳米大小的花胶束型纳米粒子(NanoLys/PAAc或NanoLys/PSS)。在生理离子强度下,即使在低聚合物浓度(如40 mg/mL)下,花胶束也表现出不可逆的温度驱动的溶胶-凝胶转变,使其成为注射水凝胶应用的有希望的候选物。流变学研究表明,PLys片段的链长和聚阴离子的选择对不可逆水凝胶的形成有显著影响,PSS的不可逆水凝胶的形成优于PAAc。将硅胶纳米颗粒掺入到PIC花胶束中也会产生不可逆的凝胶化现象。凝胶化后最高储存模量超过10kpa,足以满足实际应用。这项研究证明了这些基于pic的水凝胶作为生物医学应用中具有可调性能的生物材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poly(L-lysine)-block-poly(ethylene glycol)-block-poly(L-lysine) triblock copolymers for the preparation of flower micelles and their irreversible hydrogel formation.

Poly(L-lysine)-block-poly(ethylene glycol)-block-poly(L-lysine) (PLys-block-PEG-block-PLys) triblock copolymers formed polyion complex (PIC) with poly(acrylic acid) (PAAc) or sodium poly(styrenesulfonate) (PSS), leading to the formation of flower micelle-type nanoparticles (NanoLys/PAAc or NanoLys/PSS) with tens of nanometers size in water at a polymer concentration of 10 mg/mL. The flower micelles exhibited irreversible temperature-driven sol-gel transitions at physiological ionic strength, even at low polymer concentrations such as 40 mg/mL, making them promising candidates for injectable hydrogel applications. Rheological studies showed that the chain length of PLys segments and the choice of polyanions significantly impacted irreversible hydrogel formation, with PSS being superior to PAAc for the formation. The incorporation of silica gel nanoparticles into the PIC flower micelles also resulted in irreversible gelation phenomena. The highest storage modulus exceeded 10 kPa after gelation, which is sufficient for practical applications. This study demonstrates the potential of these PIC-based hydrogels as biomaterials with tunable properties for biomedical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science and Technology of Advanced Materials
Science and Technology of Advanced Materials 工程技术-材料科学:综合
CiteScore
10.60
自引率
3.60%
发文量
52
审稿时长
4.8 months
期刊介绍: Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering. The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications. Of particular interest are research papers on the following topics: Materials informatics and materials genomics Materials for 3D printing and additive manufacturing Nanostructured/nanoscale materials and nanodevices Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications Materials for energy and environment, next-generation photovoltaics, and green technologies Advanced structural materials, materials for extreme conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信