利用暗场显微镜和深度学习对无标记细菌进行虚拟革兰氏染色。

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Çağatay Işıl, Hatice Ceylan Koydemir, Merve Eryilmaz, Kevin de Haan, Nir Pillar, Koray Mentesoglu, Aras Firat Unal, Yair Rivenson, Sukantha Chandrasekaran, Omai B. Garner, Aydogan Ozcan
{"title":"利用暗场显微镜和深度学习对无标记细菌进行虚拟革兰氏染色。","authors":"Çağatay Işıl,&nbsp;Hatice Ceylan Koydemir,&nbsp;Merve Eryilmaz,&nbsp;Kevin de Haan,&nbsp;Nir Pillar,&nbsp;Koray Mentesoglu,&nbsp;Aras Firat Unal,&nbsp;Yair Rivenson,&nbsp;Sukantha Chandrasekaran,&nbsp;Omai B. Garner,&nbsp;Aydogan Ozcan","doi":"10.1126/sciadv.ads2757","DOIUrl":null,"url":null,"abstract":"<div >Gram staining has been a frequently used staining protocol in microbiology. It is vulnerable to staining artifacts due to, e.g., operator errors and chemical variations. Here, we introduce virtual Gram staining of label-free bacteria using a trained neural network that digitally transforms dark-field images of unstained bacteria into their Gram-stained equivalents matching bright-field image contrast. After a one-time training, the virtual Gram staining model processes an axial stack of dark-field microscopy images of label-free bacteria (never seen before) to rapidly generate Gram staining, bypassing several chemical steps involved in the conventional staining process. We demonstrated the success of virtual Gram staining on label-free bacteria samples containing <i>Escherichia coli</i> and <i>Listeria innocua</i> by quantifying the staining accuracy of the model and comparing the chromatic and morphological features of the virtually stained bacteria against their chemically stained counterparts. This virtual bacterial staining framework bypasses the traditional Gram staining protocol and its challenges, including stain standardization, operator errors, and sensitivity to chemical variations.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 2","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ads2757","citationCount":"0","resultStr":"{\"title\":\"Virtual Gram staining of label-free bacteria using dark-field microscopy and deep learning\",\"authors\":\"Çağatay Işıl,&nbsp;Hatice Ceylan Koydemir,&nbsp;Merve Eryilmaz,&nbsp;Kevin de Haan,&nbsp;Nir Pillar,&nbsp;Koray Mentesoglu,&nbsp;Aras Firat Unal,&nbsp;Yair Rivenson,&nbsp;Sukantha Chandrasekaran,&nbsp;Omai B. Garner,&nbsp;Aydogan Ozcan\",\"doi\":\"10.1126/sciadv.ads2757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Gram staining has been a frequently used staining protocol in microbiology. It is vulnerable to staining artifacts due to, e.g., operator errors and chemical variations. Here, we introduce virtual Gram staining of label-free bacteria using a trained neural network that digitally transforms dark-field images of unstained bacteria into their Gram-stained equivalents matching bright-field image contrast. After a one-time training, the virtual Gram staining model processes an axial stack of dark-field microscopy images of label-free bacteria (never seen before) to rapidly generate Gram staining, bypassing several chemical steps involved in the conventional staining process. We demonstrated the success of virtual Gram staining on label-free bacteria samples containing <i>Escherichia coli</i> and <i>Listeria innocua</i> by quantifying the staining accuracy of the model and comparing the chromatic and morphological features of the virtually stained bacteria against their chemically stained counterparts. This virtual bacterial staining framework bypasses the traditional Gram staining protocol and its challenges, including stain standardization, operator errors, and sensitivity to chemical variations.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 2\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.ads2757\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.ads2757\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ads2757","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

革兰氏染色是微生物学中常用的染色方法。由于操作人员的错误和化学变化,它很容易受到染色工件的影响。在这里,我们使用经过训练的神经网络引入无标签细菌的虚拟革兰氏染色,该网络将未染色细菌的暗场图像数字转换为与其亮场图像对比度相匹配的革兰氏染色等效图像。经过一次训练后,虚拟革兰氏染色模型处理无标签细菌(以前从未见过)的暗场显微镜图像的轴向堆叠,以快速生成革兰氏染色,绕过了传统染色过程中涉及的几个化学步骤。我们通过量化模型的染色准确性,并将虚拟染色细菌的颜色和形态特征与化学染色的细菌进行比较,证明了虚拟革兰氏染色在含有大肠杆菌和无痕李斯特菌的无标签细菌样品上的成功。这种虚拟细菌染色框架绕过了传统的革兰氏染色方案及其挑战,包括染色标准化、操作错误和对化学变化的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Virtual Gram staining of label-free bacteria using dark-field microscopy and deep learning

Virtual Gram staining of label-free bacteria using dark-field microscopy and deep learning
Gram staining has been a frequently used staining protocol in microbiology. It is vulnerable to staining artifacts due to, e.g., operator errors and chemical variations. Here, we introduce virtual Gram staining of label-free bacteria using a trained neural network that digitally transforms dark-field images of unstained bacteria into their Gram-stained equivalents matching bright-field image contrast. After a one-time training, the virtual Gram staining model processes an axial stack of dark-field microscopy images of label-free bacteria (never seen before) to rapidly generate Gram staining, bypassing several chemical steps involved in the conventional staining process. We demonstrated the success of virtual Gram staining on label-free bacteria samples containing Escherichia coli and Listeria innocua by quantifying the staining accuracy of the model and comparing the chromatic and morphological features of the virtually stained bacteria against their chemically stained counterparts. This virtual bacterial staining framework bypasses the traditional Gram staining protocol and its challenges, including stain standardization, operator errors, and sensitivity to chemical variations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信