{"title":"香豆素激发的双功能杂交体的开发作为一类新的抗阿尔茨海默病药物具有强大的体内疗效。","authors":"Atamjit Singh, Aman Sharma, Karanvir Singh, Kirandeep Kaur, Pallvi Mohana, Jignesh Prajapati, Uttam Kaur, Dweipayan Goswami, Saroj Arora, Renu Chadha, Preet Mohinder Singh Bedi","doi":"10.1039/d4md00782d","DOIUrl":null,"url":null,"abstract":"<p><p>Considering the multifactorial and complex nature of Alzheimer's disease and the requirement of an optimum multifunctional anti-Alzheimer's agent, a series of triazole tethered coumarin-eugenol hybrid molecules was designed as potential multifunctional anti-Alzheimer's agents using donepezil and a template. The designed hybrid molecules were synthesized <i>via</i> a click chemistry approach and preliminarily screened for cholinesterase and Aβ<sub>1-42</sub> aggregation inhibition. Among them, AS15 emerged as a selective inhibitor of AChE (IC<sub>50</sub> = 0.047 μM) over butyrylcholinesterase (BuChE: IC<sub>50</sub> ≥ 10 μM) with desired Aβ<sub>1-42</sub> aggregation inhibition (72.21% at 50 μM) properties. In addition, AS15 showed protective effects against DNA damage caused by hydroxyl radicals originating from H<sub>2</sub>O<sub>2</sub>. Molecular docking and simulation studies confirmed the favorable interactions of AChE and the Aβ<sub>1-42</sub> monomer desired for their inhibition. AS15 exhibited an LD<sub>50</sub> value of 300 mg kg<sup>-1</sup> and showed significant improvements in memory and learning behavior in scopolamine-induced cognition impairment mouse-based animal models (Y-maze test and Morris water maze test) for behavioral analysis. Overall outcomes suggest AS15 as a potential preclinical multifunctional candidate for the management of Alzheimer's disease, and it serves as a promising lead for further development of potent and safer multifunctional anti-Alzheimer's agents.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707525/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of coumarin-inspired bifunctional hybrids as a new class of anti-Alzheimer's agents with potent <i>in vivo</i> efficacy.\",\"authors\":\"Atamjit Singh, Aman Sharma, Karanvir Singh, Kirandeep Kaur, Pallvi Mohana, Jignesh Prajapati, Uttam Kaur, Dweipayan Goswami, Saroj Arora, Renu Chadha, Preet Mohinder Singh Bedi\",\"doi\":\"10.1039/d4md00782d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Considering the multifactorial and complex nature of Alzheimer's disease and the requirement of an optimum multifunctional anti-Alzheimer's agent, a series of triazole tethered coumarin-eugenol hybrid molecules was designed as potential multifunctional anti-Alzheimer's agents using donepezil and a template. The designed hybrid molecules were synthesized <i>via</i> a click chemistry approach and preliminarily screened for cholinesterase and Aβ<sub>1-42</sub> aggregation inhibition. Among them, AS15 emerged as a selective inhibitor of AChE (IC<sub>50</sub> = 0.047 μM) over butyrylcholinesterase (BuChE: IC<sub>50</sub> ≥ 10 μM) with desired Aβ<sub>1-42</sub> aggregation inhibition (72.21% at 50 μM) properties. In addition, AS15 showed protective effects against DNA damage caused by hydroxyl radicals originating from H<sub>2</sub>O<sub>2</sub>. Molecular docking and simulation studies confirmed the favorable interactions of AChE and the Aβ<sub>1-42</sub> monomer desired for their inhibition. AS15 exhibited an LD<sub>50</sub> value of 300 mg kg<sup>-1</sup> and showed significant improvements in memory and learning behavior in scopolamine-induced cognition impairment mouse-based animal models (Y-maze test and Morris water maze test) for behavioral analysis. Overall outcomes suggest AS15 as a potential preclinical multifunctional candidate for the management of Alzheimer's disease, and it serves as a promising lead for further development of potent and safer multifunctional anti-Alzheimer's agents.</p>\",\"PeriodicalId\":21462,\"journal\":{\"name\":\"RSC medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707525/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1039/d4md00782d\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1039/d4md00782d","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Development of coumarin-inspired bifunctional hybrids as a new class of anti-Alzheimer's agents with potent in vivo efficacy.
Considering the multifactorial and complex nature of Alzheimer's disease and the requirement of an optimum multifunctional anti-Alzheimer's agent, a series of triazole tethered coumarin-eugenol hybrid molecules was designed as potential multifunctional anti-Alzheimer's agents using donepezil and a template. The designed hybrid molecules were synthesized via a click chemistry approach and preliminarily screened for cholinesterase and Aβ1-42 aggregation inhibition. Among them, AS15 emerged as a selective inhibitor of AChE (IC50 = 0.047 μM) over butyrylcholinesterase (BuChE: IC50 ≥ 10 μM) with desired Aβ1-42 aggregation inhibition (72.21% at 50 μM) properties. In addition, AS15 showed protective effects against DNA damage caused by hydroxyl radicals originating from H2O2. Molecular docking and simulation studies confirmed the favorable interactions of AChE and the Aβ1-42 monomer desired for their inhibition. AS15 exhibited an LD50 value of 300 mg kg-1 and showed significant improvements in memory and learning behavior in scopolamine-induced cognition impairment mouse-based animal models (Y-maze test and Morris water maze test) for behavioral analysis. Overall outcomes suggest AS15 as a potential preclinical multifunctional candidate for the management of Alzheimer's disease, and it serves as a promising lead for further development of potent and safer multifunctional anti-Alzheimer's agents.