Na Li, Qing Ma, Xiaoyu Ni, Ye Yang, Ronghao Cai, Yang Zhao, Liangzhi Tao, Yang Yang
{"title":"叶片氨排放率的无损测量可以部分反映玉米的生长状况。","authors":"Na Li, Qing Ma, Xiaoyu Ni, Ye Yang, Ronghao Cai, Yang Zhao, Liangzhi Tao, Yang Yang","doi":"10.1016/j.plaphy.2024.109469","DOIUrl":null,"url":null,"abstract":"<p><p>A deep understanding of ammonia (NH<sub>3</sub>) emissions from cropland can promote efficient crop production. To date, little is known about leaf NH<sub>3</sub> emissions because of the lack of rapid detection methods. We developed a method for detecting leaf NH<sub>3</sub> emissions based on portable NH<sub>3</sub> sensors. The study aimed to (i) determine the performance of the method in detecting leaf NH<sub>3</sub> emissions; (ii) analyze the variation of leaf NH<sub>3</sub> emissions with foliar rank; and (iii) elucidate the relationships between leaf NH<sub>3</sub> emissions and other leaf parameters. Maize (Zea mays L.) was used as the tested plant. The results showed that the NH<sub>3</sub> sensors had good repeatability, accuracy, and selectivity in detecting NH<sub>3</sub>. The response time of the method ranged 7-22 s and the NH<sub>3</sub> reading ranged 0.078-0.463 μmol mol<sup>-1</sup>. Leaf NH<sub>3</sub> emissions were observed mainly in daytime (negligible at night). Daytime leaf NH<sub>3</sub> emission rates ranged 0.347-1.725 μg N cm<sup>-2</sup> d<sup>-1</sup>. The middle leaves (near the ear) were the major contributor to plant NH<sub>3</sub>-N loss. There were significant linear relationships between leaf NH<sub>3</sub> emission rates and other nondestructively-measured leaf parameters [e.g., SPAD (soil and plant analyzer development, which reflects the relative concentration of leaf chlorophyll), stomatal conductance, transpiration rate, and net photosynthetic rate] (p < 0.01), as well as with leaf apoplastic ammonium (NH<sub>4</sub><sup>+</sup>) concentration and leaf total N concentration (p < 0.01). Nitrogen application increased leaf apoplastic NH<sub>4</sub><sup>+</sup> concentration, leaf total N concentration, and leaf NH<sub>3</sub> emission rate. Overall, nondestructively-measured leaf NH<sub>3</sub> emission rates can partly reflect maize growth status and provide information for N management in maize production.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109469"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nondestructively-measured leaf ammonia emission rates can partly reflect maize growth status.\",\"authors\":\"Na Li, Qing Ma, Xiaoyu Ni, Ye Yang, Ronghao Cai, Yang Zhao, Liangzhi Tao, Yang Yang\",\"doi\":\"10.1016/j.plaphy.2024.109469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A deep understanding of ammonia (NH<sub>3</sub>) emissions from cropland can promote efficient crop production. To date, little is known about leaf NH<sub>3</sub> emissions because of the lack of rapid detection methods. We developed a method for detecting leaf NH<sub>3</sub> emissions based on portable NH<sub>3</sub> sensors. The study aimed to (i) determine the performance of the method in detecting leaf NH<sub>3</sub> emissions; (ii) analyze the variation of leaf NH<sub>3</sub> emissions with foliar rank; and (iii) elucidate the relationships between leaf NH<sub>3</sub> emissions and other leaf parameters. Maize (Zea mays L.) was used as the tested plant. The results showed that the NH<sub>3</sub> sensors had good repeatability, accuracy, and selectivity in detecting NH<sub>3</sub>. The response time of the method ranged 7-22 s and the NH<sub>3</sub> reading ranged 0.078-0.463 μmol mol<sup>-1</sup>. Leaf NH<sub>3</sub> emissions were observed mainly in daytime (negligible at night). Daytime leaf NH<sub>3</sub> emission rates ranged 0.347-1.725 μg N cm<sup>-2</sup> d<sup>-1</sup>. The middle leaves (near the ear) were the major contributor to plant NH<sub>3</sub>-N loss. There were significant linear relationships between leaf NH<sub>3</sub> emission rates and other nondestructively-measured leaf parameters [e.g., SPAD (soil and plant analyzer development, which reflects the relative concentration of leaf chlorophyll), stomatal conductance, transpiration rate, and net photosynthetic rate] (p < 0.01), as well as with leaf apoplastic ammonium (NH<sub>4</sub><sup>+</sup>) concentration and leaf total N concentration (p < 0.01). Nitrogen application increased leaf apoplastic NH<sub>4</sub><sup>+</sup> concentration, leaf total N concentration, and leaf NH<sub>3</sub> emission rate. Overall, nondestructively-measured leaf NH<sub>3</sub> emission rates can partly reflect maize growth status and provide information for N management in maize production.</p>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"220 \",\"pages\":\"109469\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.plaphy.2024.109469\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2024.109469","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
A deep understanding of ammonia (NH3) emissions from cropland can promote efficient crop production. To date, little is known about leaf NH3 emissions because of the lack of rapid detection methods. We developed a method for detecting leaf NH3 emissions based on portable NH3 sensors. The study aimed to (i) determine the performance of the method in detecting leaf NH3 emissions; (ii) analyze the variation of leaf NH3 emissions with foliar rank; and (iii) elucidate the relationships between leaf NH3 emissions and other leaf parameters. Maize (Zea mays L.) was used as the tested plant. The results showed that the NH3 sensors had good repeatability, accuracy, and selectivity in detecting NH3. The response time of the method ranged 7-22 s and the NH3 reading ranged 0.078-0.463 μmol mol-1. Leaf NH3 emissions were observed mainly in daytime (negligible at night). Daytime leaf NH3 emission rates ranged 0.347-1.725 μg N cm-2 d-1. The middle leaves (near the ear) were the major contributor to plant NH3-N loss. There were significant linear relationships between leaf NH3 emission rates and other nondestructively-measured leaf parameters [e.g., SPAD (soil and plant analyzer development, which reflects the relative concentration of leaf chlorophyll), stomatal conductance, transpiration rate, and net photosynthetic rate] (p < 0.01), as well as with leaf apoplastic ammonium (NH4+) concentration and leaf total N concentration (p < 0.01). Nitrogen application increased leaf apoplastic NH4+ concentration, leaf total N concentration, and leaf NH3 emission rate. Overall, nondestructively-measured leaf NH3 emission rates can partly reflect maize growth status and provide information for N management in maize production.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.