Remy Ben Messaoud, Vincent Le Du, Camile Bousfiha, Marie-Constance Corsi, Juliana Gonzalez-Astudillo, Brigitte Charlotte Kaufmann, Tristan Venot, Baptiste Couvy-Duchesne, Lara Migliaccio, Charlotte Rosso, Paolo Bartolomeo, Mario Chavez, Fabrizio De Vico Fallani
{"title":"大脑网络的低维可控性。","authors":"Remy Ben Messaoud, Vincent Le Du, Camile Bousfiha, Marie-Constance Corsi, Juliana Gonzalez-Astudillo, Brigitte Charlotte Kaufmann, Tristan Venot, Baptiste Couvy-Duchesne, Lara Migliaccio, Charlotte Rosso, Paolo Bartolomeo, Mario Chavez, Fabrizio De Vico Fallani","doi":"10.1371/journal.pcbi.1012691","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying the driver nodes of a network has crucial implications in biological systems from unveiling causal interactions to informing effective intervention strategies. Despite recent advances in network control theory, results remain inaccurate as the number of drivers becomes too small compared to the network size, thus limiting the concrete usability in many real-life applications. To overcome this issue, we introduced a framework that integrates principles from spectral graph theory and output controllability to project the network state into a smaller topological space formed by the Laplacian network structure. Through extensive simulations on synthetic and real networks, we showed that a relatively low number of projected components can significantly improve the control accuracy. By introducing a new low-dimensional controllability metric we experimentally validated our method on N = 6134 human connectomes obtained from the UK-biobank cohort. Results revealed previously unappreciated influential brain regions, enabled to draw directed maps between differently specialized cerebral systems, and yielded new insights into hemispheric lateralization. Taken together, our results offered a theoretically grounded solution to deal with network controllability and provided insights into the causal interactions of the human brain.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 1","pages":"e1012691"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706394/pdf/","citationCount":"0","resultStr":"{\"title\":\"Low-dimensional controllability of brain networks.\",\"authors\":\"Remy Ben Messaoud, Vincent Le Du, Camile Bousfiha, Marie-Constance Corsi, Juliana Gonzalez-Astudillo, Brigitte Charlotte Kaufmann, Tristan Venot, Baptiste Couvy-Duchesne, Lara Migliaccio, Charlotte Rosso, Paolo Bartolomeo, Mario Chavez, Fabrizio De Vico Fallani\",\"doi\":\"10.1371/journal.pcbi.1012691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identifying the driver nodes of a network has crucial implications in biological systems from unveiling causal interactions to informing effective intervention strategies. Despite recent advances in network control theory, results remain inaccurate as the number of drivers becomes too small compared to the network size, thus limiting the concrete usability in many real-life applications. To overcome this issue, we introduced a framework that integrates principles from spectral graph theory and output controllability to project the network state into a smaller topological space formed by the Laplacian network structure. Through extensive simulations on synthetic and real networks, we showed that a relatively low number of projected components can significantly improve the control accuracy. By introducing a new low-dimensional controllability metric we experimentally validated our method on N = 6134 human connectomes obtained from the UK-biobank cohort. Results revealed previously unappreciated influential brain regions, enabled to draw directed maps between differently specialized cerebral systems, and yielded new insights into hemispheric lateralization. Taken together, our results offered a theoretically grounded solution to deal with network controllability and provided insights into the causal interactions of the human brain.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"21 1\",\"pages\":\"e1012691\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706394/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1012691\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012691","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Low-dimensional controllability of brain networks.
Identifying the driver nodes of a network has crucial implications in biological systems from unveiling causal interactions to informing effective intervention strategies. Despite recent advances in network control theory, results remain inaccurate as the number of drivers becomes too small compared to the network size, thus limiting the concrete usability in many real-life applications. To overcome this issue, we introduced a framework that integrates principles from spectral graph theory and output controllability to project the network state into a smaller topological space formed by the Laplacian network structure. Through extensive simulations on synthetic and real networks, we showed that a relatively low number of projected components can significantly improve the control accuracy. By introducing a new low-dimensional controllability metric we experimentally validated our method on N = 6134 human connectomes obtained from the UK-biobank cohort. Results revealed previously unappreciated influential brain regions, enabled to draw directed maps between differently specialized cerebral systems, and yielded new insights into hemispheric lateralization. Taken together, our results offered a theoretically grounded solution to deal with network controllability and provided insights into the causal interactions of the human brain.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.