一种用于心肌梗死后心脏修复的免疫调节和代谢改善注射水凝胶。

IF 5.6 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Regenerative Biomaterials Pub Date : 2024-11-13 eCollection Date: 2025-01-01 DOI:10.1093/rb/rbae131
Yage Sun, Xinrui Zhao, Qian Zhang, Rong Yang, Wenguang Liu
{"title":"一种用于心肌梗死后心脏修复的免疫调节和代谢改善注射水凝胶。","authors":"Yage Sun, Xinrui Zhao, Qian Zhang, Rong Yang, Wenguang Liu","doi":"10.1093/rb/rbae131","DOIUrl":null,"url":null,"abstract":"<p><p>The hypoxia microenvironment post-myocardial infarction (MI) critically disturbs cellular metabolism and inflammation response, leading to scarce bioenergy supplying, prolonged inflammatory phase and high risk of cardiac fibrosis during cardiac restoration. Herein, an injectable hydrogel is prepared by Schiff base reaction between fructose-1,6-bisphosphate (FBP)-grafted carboxymethyl chitosan (CF) and oxidized dextran (OD), followed by loading fucoidan-coated baicalin (BA)-encapsulated zein nanoparticles (BFZ NPs), in which immunoregulatory and metabolism improving functions are integrally included. The grafted FBP serves to enhance glycolysis and provide more bioenergy for cardiomyocytes survival under hypoxia microenvironment, and elevating cellular antioxidant capacity <i>via</i> pentose phosphate pathway. OD with intrinsic anti-inflammatory effect can induce M2 polarization of macrophages to accelerate inflammatory elimination. While facing the possibility of endothelial-to-mesenchymal transition (EndoMT) caused by excessive expressed TGF-β1 secreted from M2 macrophages, BFZ NPs can target endothelia cells and intracellularly release BA to regulate the level of fatty acid oxidation, resulting in retained endothelial features and decreased risk of cardiac fibrosis. After being injecting the hydrogel into rats' infarcted cardiac, the 28-day-post surgical outcomes demonstrate its benign effects on restoring cardiac functions and attenuating adverse left ventricular remodeling. This study shows a promising measure for MI treatment with immunoregulating and metabolism regulation comprehensively.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"12 ","pages":"rbae131"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703553/pdf/","citationCount":"0","resultStr":"{\"title\":\"An immunoregulatory and metabolism-improving injectable hydrogel for cardiac repair after myocardial infarction.\",\"authors\":\"Yage Sun, Xinrui Zhao, Qian Zhang, Rong Yang, Wenguang Liu\",\"doi\":\"10.1093/rb/rbae131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The hypoxia microenvironment post-myocardial infarction (MI) critically disturbs cellular metabolism and inflammation response, leading to scarce bioenergy supplying, prolonged inflammatory phase and high risk of cardiac fibrosis during cardiac restoration. Herein, an injectable hydrogel is prepared by Schiff base reaction between fructose-1,6-bisphosphate (FBP)-grafted carboxymethyl chitosan (CF) and oxidized dextran (OD), followed by loading fucoidan-coated baicalin (BA)-encapsulated zein nanoparticles (BFZ NPs), in which immunoregulatory and metabolism improving functions are integrally included. The grafted FBP serves to enhance glycolysis and provide more bioenergy for cardiomyocytes survival under hypoxia microenvironment, and elevating cellular antioxidant capacity <i>via</i> pentose phosphate pathway. OD with intrinsic anti-inflammatory effect can induce M2 polarization of macrophages to accelerate inflammatory elimination. While facing the possibility of endothelial-to-mesenchymal transition (EndoMT) caused by excessive expressed TGF-β1 secreted from M2 macrophages, BFZ NPs can target endothelia cells and intracellularly release BA to regulate the level of fatty acid oxidation, resulting in retained endothelial features and decreased risk of cardiac fibrosis. After being injecting the hydrogel into rats' infarcted cardiac, the 28-day-post surgical outcomes demonstrate its benign effects on restoring cardiac functions and attenuating adverse left ventricular remodeling. This study shows a promising measure for MI treatment with immunoregulating and metabolism regulation comprehensively.</p>\",\"PeriodicalId\":20929,\"journal\":{\"name\":\"Regenerative Biomaterials\",\"volume\":\"12 \",\"pages\":\"rbae131\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703553/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/rb/rbae131\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae131","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

心肌梗死(MI)后缺氧微环境严重扰乱细胞代谢和炎症反应,导致生物能量供应不足,炎症期延长,心脏恢复过程中心肌纤维化风险高。本研究以果糖-1,6-二磷酸(FBP)接枝羧甲基壳聚糖(CF)和氧化葡聚糖(OD)为原料,通过希夫碱反应制备了一种可注射的水凝胶,然后负载岩藻糖苷包被黄芩苷(BA)包被的玉米蛋白纳米颗粒(BFZ NPs),该纳米颗粒具有免疫调节和代谢改善功能。移植物FBP可促进糖酵解,为缺氧微环境下心肌细胞存活提供更多生物能量,并通过戊糖磷酸途径提高细胞抗氧化能力。具有内在抗炎作用的OD可诱导巨噬细胞M2极化,加速炎症消除。面对M2巨噬细胞分泌的TGF-β1过度表达导致的内皮-间质转化(EndoMT)的可能性,BFZ NPs可以靶向内皮细胞,在细胞内释放BA调节脂肪酸氧化水平,保留内皮特征,降低心肌纤维化风险。将水凝胶注射到梗死大鼠心脏,术后28天的结果显示其对恢复心功能和减轻不良左心室重构有良好的作用。本研究显示了免疫调节和代谢调节综合治疗心肌梗死的一种很有前景的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An immunoregulatory and metabolism-improving injectable hydrogel for cardiac repair after myocardial infarction.

The hypoxia microenvironment post-myocardial infarction (MI) critically disturbs cellular metabolism and inflammation response, leading to scarce bioenergy supplying, prolonged inflammatory phase and high risk of cardiac fibrosis during cardiac restoration. Herein, an injectable hydrogel is prepared by Schiff base reaction between fructose-1,6-bisphosphate (FBP)-grafted carboxymethyl chitosan (CF) and oxidized dextran (OD), followed by loading fucoidan-coated baicalin (BA)-encapsulated zein nanoparticles (BFZ NPs), in which immunoregulatory and metabolism improving functions are integrally included. The grafted FBP serves to enhance glycolysis and provide more bioenergy for cardiomyocytes survival under hypoxia microenvironment, and elevating cellular antioxidant capacity via pentose phosphate pathway. OD with intrinsic anti-inflammatory effect can induce M2 polarization of macrophages to accelerate inflammatory elimination. While facing the possibility of endothelial-to-mesenchymal transition (EndoMT) caused by excessive expressed TGF-β1 secreted from M2 macrophages, BFZ NPs can target endothelia cells and intracellularly release BA to regulate the level of fatty acid oxidation, resulting in retained endothelial features and decreased risk of cardiac fibrosis. After being injecting the hydrogel into rats' infarcted cardiac, the 28-day-post surgical outcomes demonstrate its benign effects on restoring cardiac functions and attenuating adverse left ventricular remodeling. This study shows a promising measure for MI treatment with immunoregulating and metabolism regulation comprehensively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Regenerative Biomaterials
Regenerative Biomaterials Materials Science-Biomaterials
CiteScore
7.90
自引率
16.40%
发文量
92
审稿时长
10 weeks
期刊介绍: Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信