利用Se转录组分析和共表达网络分析提高西兰花芽中萝卜硫素的含量,为其机制响应提供了新的见解。

IF 5.4 2区 生物学 Q1 PLANT SCIENCES
Shuxiang Mao, Junwei Wang, Zhijun Guo, Huiping Huang, Shengze Wang, Dandan Fei, Juan Liu, Qi Wu, Jin Nie, Qiuyun Wu, Ke Huang
{"title":"利用Se转录组分析和共表达网络分析提高西兰花芽中萝卜硫素的含量,为其机制响应提供了新的见解。","authors":"Shuxiang Mao, Junwei Wang, Zhijun Guo, Huiping Huang, Shengze Wang, Dandan Fei, Juan Liu, Qi Wu, Jin Nie, Qiuyun Wu, Ke Huang","doi":"10.1111/ppl.70037","DOIUrl":null,"url":null,"abstract":"<p><p>Sulforaphane (SF) is a sulfur (S)-containing isothiocyanate found in cruciferous vegetables and is known for its potent anticancer properties. Broccoli sprouts, in particular, are considered safe and healthy dietary choices due to their high SF content and other beneficial biological activities, such as enhanced metabolite ingestion. The application of selenium (Se) is an excellent approach to enhance the abundance of SF. Previous studies have often focused on gene expression and changes in the synthetic substrates of glucoraphanin (RAA) to explain SF variation in response to Se application. However, the regulatory network and other physiological and biochemical reactions involved in the regulation of SF biosynthesis are poorly understood. In this study, Se-treated broccoli sprouts had higher SF and RAA contents; they increased with increasing Se application. Using RNA-seq in combination with KEGG, GO, phenotypic, and WGCNA analyses, it was observed that not only gene expression was induced but also that glutathione serves as an S donor for SF biosynthesis and acts as an oxidative stress reliever as a result of Se treatment. Additionally, a module related to glucosinolate biosynthesis was identified. Yeast one-hybrid system and dual luciferase reporter assay were utilized. These assays demonstrated the hub transcription factors GATA22, ERF12-like, and MYB108 would directly bind to SUR1 promoter and positively regulate its expression. Our study presents the first global overview of the role of GSH metabolism in response to Se for SF biosynthesis, and provides a novel and valuable gene resource for the molecular breeding of high-SF broccoli.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70037"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving sulforaphane content in broccoli sprouts by applying Se: transcriptome profiling and coexpression network analysis provide insights into the mechanistic response.\",\"authors\":\"Shuxiang Mao, Junwei Wang, Zhijun Guo, Huiping Huang, Shengze Wang, Dandan Fei, Juan Liu, Qi Wu, Jin Nie, Qiuyun Wu, Ke Huang\",\"doi\":\"10.1111/ppl.70037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sulforaphane (SF) is a sulfur (S)-containing isothiocyanate found in cruciferous vegetables and is known for its potent anticancer properties. Broccoli sprouts, in particular, are considered safe and healthy dietary choices due to their high SF content and other beneficial biological activities, such as enhanced metabolite ingestion. The application of selenium (Se) is an excellent approach to enhance the abundance of SF. Previous studies have often focused on gene expression and changes in the synthetic substrates of glucoraphanin (RAA) to explain SF variation in response to Se application. However, the regulatory network and other physiological and biochemical reactions involved in the regulation of SF biosynthesis are poorly understood. In this study, Se-treated broccoli sprouts had higher SF and RAA contents; they increased with increasing Se application. Using RNA-seq in combination with KEGG, GO, phenotypic, and WGCNA analyses, it was observed that not only gene expression was induced but also that glutathione serves as an S donor for SF biosynthesis and acts as an oxidative stress reliever as a result of Se treatment. Additionally, a module related to glucosinolate biosynthesis was identified. Yeast one-hybrid system and dual luciferase reporter assay were utilized. These assays demonstrated the hub transcription factors GATA22, ERF12-like, and MYB108 would directly bind to SUR1 promoter and positively regulate its expression. Our study presents the first global overview of the role of GSH metabolism in response to Se for SF biosynthesis, and provides a novel and valuable gene resource for the molecular breeding of high-SF broccoli.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 1\",\"pages\":\"e70037\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70037\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70037","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

萝卜硫素(SF)是十字花科蔬菜中发现的一种含硫的异硫氰酸盐,以其有效的抗癌特性而闻名。特别是西兰花芽,由于其高SF含量和其他有益的生物活性,如促进代谢物的摄入,被认为是安全和健康的饮食选择。硒(Se)的应用是提高SF丰度的一个很好的途径。以往的研究往往集中在基因表达和合成底物glucoraphanin (RAA)的变化上,以解释硒对SF的影响。然而,调控SF生物合成的调控网络和其他生理生化反应尚不清楚。在本研究中,硒处理的西兰花芽具有较高的SF和RAA含量;随硒用量的增加而增加。通过RNA-seq结合KEGG、GO、表型和WGCNA分析,观察到不仅基因表达被诱导,而且谷胱甘肽作为SF生物合成的S供体,并作为硒处理的氧化应激缓解剂。此外,还鉴定了一个与硫代葡萄糖苷生物合成相关的模块。采用酵母单杂交体系和双荧光素酶报告基因法。这些实验表明枢纽转录因子GATA22、ERF12-like和MYB108可以直接结合到SUR1启动子上并正向调节其表达。我们的研究首次在全球范围内概述了谷胱甘肽代谢在硒对SF生物合成的响应中的作用,并为高SF西兰花的分子育种提供了新的有价值的基因资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving sulforaphane content in broccoli sprouts by applying Se: transcriptome profiling and coexpression network analysis provide insights into the mechanistic response.

Sulforaphane (SF) is a sulfur (S)-containing isothiocyanate found in cruciferous vegetables and is known for its potent anticancer properties. Broccoli sprouts, in particular, are considered safe and healthy dietary choices due to their high SF content and other beneficial biological activities, such as enhanced metabolite ingestion. The application of selenium (Se) is an excellent approach to enhance the abundance of SF. Previous studies have often focused on gene expression and changes in the synthetic substrates of glucoraphanin (RAA) to explain SF variation in response to Se application. However, the regulatory network and other physiological and biochemical reactions involved in the regulation of SF biosynthesis are poorly understood. In this study, Se-treated broccoli sprouts had higher SF and RAA contents; they increased with increasing Se application. Using RNA-seq in combination with KEGG, GO, phenotypic, and WGCNA analyses, it was observed that not only gene expression was induced but also that glutathione serves as an S donor for SF biosynthesis and acts as an oxidative stress reliever as a result of Se treatment. Additionally, a module related to glucosinolate biosynthesis was identified. Yeast one-hybrid system and dual luciferase reporter assay were utilized. These assays demonstrated the hub transcription factors GATA22, ERF12-like, and MYB108 would directly bind to SUR1 promoter and positively regulate its expression. Our study presents the first global overview of the role of GSH metabolism in response to Se for SF biosynthesis, and provides a novel and valuable gene resource for the molecular breeding of high-SF broccoli.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信