胸载损害健康男性对缺氧的急性生理反应。

IF 2.2 Q3 PHYSIOLOGY
Daniel A Baur, Caroline M Lassalle, Stephanie P Kurti
{"title":"胸载损害健康男性对缺氧的急性生理反应。","authors":"Daniel A Baur, Caroline M Lassalle, Stephanie P Kurti","doi":"10.14814/phy2.70197","DOIUrl":null,"url":null,"abstract":"<p><p>To assess the impact of thoracic load carriage on the physiological response to exercise in hypoxia. Healthy males (n = 12) completed 3 trials consisting of 45 min walking in the following conditions: (1) unloaded normoxia (UN; F<sub>I</sub>O<sub>2</sub>:20.93%); (2) unloaded hypoxia (UH; F<sub>I</sub>O<sub>2</sub>:~13.0%); and (3) loaded hypoxia (LH; 29.5 kg; F<sub>I</sub>O<sub>2</sub>:~13.0%). Intensity was matched for absolute VO<sub>2</sub> (2.0 ± 0.2 L·min<sup>-1</sup>) across conditions and relative VO<sub>2</sub> (64.0 ± 2.6 %VO<sub>2max</sub>) across hypoxic conditions. With LH versus UH, there were increases in breathing frequency (5-11 breaths·min<sup>-1</sup>; p < 0.05) and decreases in tidal volume (10%-18%; p < 0.05) throughout exercise due to reductions in end inspiratory lung volumes (p < 0.05). Consequently, deadspace (11%-23%; p < 0.05) and minute ventilation (7%-11%; p < 0.05) were increased starting at 20 and 30 min, respectively. In addition, LH increased perceived exertion/dyspnea and induced inspiratory (~12%; p < 0.05 vs. UN) and expiratory (~10%; p < 0.05 vs. pre-exercise) respiratory muscle fatigue. Expiratory flow limitation was present in 50% of subjects during LH. Cardiac output and muscle oxygenation were maintained during LH despite reduced stroke volume (6%-8%; p < 0.05). Finally, cerebral oxygenated/total hemoglobin were elevated in the LH condition versus UH starting at 15 min (p < 0.05). Thoracic load carriage increases physiological strain and interferes with the compensatory response to hypoxic exposure.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":"13 1","pages":"e70197"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11710892/pdf/","citationCount":"0","resultStr":"{\"title\":\"Thoracic load carriage impairs the acute physiological response to hypoxia in healthy males.\",\"authors\":\"Daniel A Baur, Caroline M Lassalle, Stephanie P Kurti\",\"doi\":\"10.14814/phy2.70197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To assess the impact of thoracic load carriage on the physiological response to exercise in hypoxia. Healthy males (n = 12) completed 3 trials consisting of 45 min walking in the following conditions: (1) unloaded normoxia (UN; F<sub>I</sub>O<sub>2</sub>:20.93%); (2) unloaded hypoxia (UH; F<sub>I</sub>O<sub>2</sub>:~13.0%); and (3) loaded hypoxia (LH; 29.5 kg; F<sub>I</sub>O<sub>2</sub>:~13.0%). Intensity was matched for absolute VO<sub>2</sub> (2.0 ± 0.2 L·min<sup>-1</sup>) across conditions and relative VO<sub>2</sub> (64.0 ± 2.6 %VO<sub>2max</sub>) across hypoxic conditions. With LH versus UH, there were increases in breathing frequency (5-11 breaths·min<sup>-1</sup>; p < 0.05) and decreases in tidal volume (10%-18%; p < 0.05) throughout exercise due to reductions in end inspiratory lung volumes (p < 0.05). Consequently, deadspace (11%-23%; p < 0.05) and minute ventilation (7%-11%; p < 0.05) were increased starting at 20 and 30 min, respectively. In addition, LH increased perceived exertion/dyspnea and induced inspiratory (~12%; p < 0.05 vs. UN) and expiratory (~10%; p < 0.05 vs. pre-exercise) respiratory muscle fatigue. Expiratory flow limitation was present in 50% of subjects during LH. Cardiac output and muscle oxygenation were maintained during LH despite reduced stroke volume (6%-8%; p < 0.05). Finally, cerebral oxygenated/total hemoglobin were elevated in the LH condition versus UH starting at 15 min (p < 0.05). Thoracic load carriage increases physiological strain and interferes with the compensatory response to hypoxic exposure.</p>\",\"PeriodicalId\":20083,\"journal\":{\"name\":\"Physiological Reports\",\"volume\":\"13 1\",\"pages\":\"e70197\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11710892/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14814/phy2.70197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:探讨胸载负荷对低氧运动生理反应的影响。健康男性(n = 12)在以下条件下完成了3项试验,包括45分钟的步行:(1)无氧(UN;FIO2:20.93%);(2)无负荷缺氧(UH;供给:~ 13.0%);(3)负荷缺氧(LH);29.5公斤;供给:~ 13.0%)。不同缺氧条件下的绝对VO2(2.0±0.2 L·min-1)和相对VO2(64.0±2.6% VO2max)强度匹配。LH组与UH组相比,呼吸频率增加(5-11次·min-1;p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thoracic load carriage impairs the acute physiological response to hypoxia in healthy males.

To assess the impact of thoracic load carriage on the physiological response to exercise in hypoxia. Healthy males (n = 12) completed 3 trials consisting of 45 min walking in the following conditions: (1) unloaded normoxia (UN; FIO2:20.93%); (2) unloaded hypoxia (UH; FIO2:~13.0%); and (3) loaded hypoxia (LH; 29.5 kg; FIO2:~13.0%). Intensity was matched for absolute VO2 (2.0 ± 0.2 L·min-1) across conditions and relative VO2 (64.0 ± 2.6 %VO2max) across hypoxic conditions. With LH versus UH, there were increases in breathing frequency (5-11 breaths·min-1; p < 0.05) and decreases in tidal volume (10%-18%; p < 0.05) throughout exercise due to reductions in end inspiratory lung volumes (p < 0.05). Consequently, deadspace (11%-23%; p < 0.05) and minute ventilation (7%-11%; p < 0.05) were increased starting at 20 and 30 min, respectively. In addition, LH increased perceived exertion/dyspnea and induced inspiratory (~12%; p < 0.05 vs. UN) and expiratory (~10%; p < 0.05 vs. pre-exercise) respiratory muscle fatigue. Expiratory flow limitation was present in 50% of subjects during LH. Cardiac output and muscle oxygenation were maintained during LH despite reduced stroke volume (6%-8%; p < 0.05). Finally, cerebral oxygenated/total hemoglobin were elevated in the LH condition versus UH starting at 15 min (p < 0.05). Thoracic load carriage increases physiological strain and interferes with the compensatory response to hypoxic exposure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiological Reports
Physiological Reports PHYSIOLOGY-
CiteScore
4.20
自引率
4.00%
发文量
374
审稿时长
9 weeks
期刊介绍: Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信