泛素-蛋白酶体系统介导的铁下垂在神经系统疾病中的作用和机制。

IF 5.9 2区 医学 Q1 NEUROSCIENCES
Xin Liu, Wei Wang, Qiucheng Nie, Xinjing Liu, Lili Sun, Qiang Ma, Jie Zhang, Yiju Wei
{"title":"泛素-蛋白酶体系统介导的铁下垂在神经系统疾病中的作用和机制。","authors":"Xin Liu, Wei Wang, Qiucheng Nie, Xinjing Liu, Lili Sun, Qiang Ma, Jie Zhang, Yiju Wei","doi":"10.1007/s12264-024-01343-7","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis is a form of cell death elicited by an imbalance in intracellular iron concentrations, leading to enhanced lipid peroxidation. In neurological disorders, both oxidative stress and mitochondrial damage can contribute to ferroptosis, resulting in nerve cell dysfunction and death. The ubiquitin-proteasome system (UPS) refers to a cellular pathway in which specific proteins are tagged with ubiquitin for recognition and degradation by the proteasome. In neurological conditions, the UPS plays a significant role in regulating ferroptosis. In this review, we outline how the UPS regulates iron metabolism, ferroptosis, and their interplay in neurological diseases. In addition, we discuss the future application of small-molecule inhibitors and identify potential drug targets. Further investigation into the mechanisms of UPS-mediated ferroptosis will provide novel insights and strategies for therapeutic interventions and clinical applications in neurological diseases.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role and Mechanisms of Ubiquitin-Proteasome System-Mediated Ferroptosis in Neurological Disorders.\",\"authors\":\"Xin Liu, Wei Wang, Qiucheng Nie, Xinjing Liu, Lili Sun, Qiang Ma, Jie Zhang, Yiju Wei\",\"doi\":\"10.1007/s12264-024-01343-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ferroptosis is a form of cell death elicited by an imbalance in intracellular iron concentrations, leading to enhanced lipid peroxidation. In neurological disorders, both oxidative stress and mitochondrial damage can contribute to ferroptosis, resulting in nerve cell dysfunction and death. The ubiquitin-proteasome system (UPS) refers to a cellular pathway in which specific proteins are tagged with ubiquitin for recognition and degradation by the proteasome. In neurological conditions, the UPS plays a significant role in regulating ferroptosis. In this review, we outline how the UPS regulates iron metabolism, ferroptosis, and their interplay in neurological diseases. In addition, we discuss the future application of small-molecule inhibitors and identify potential drug targets. Further investigation into the mechanisms of UPS-mediated ferroptosis will provide novel insights and strategies for therapeutic interventions and clinical applications in neurological diseases.</p>\",\"PeriodicalId\":19314,\"journal\":{\"name\":\"Neuroscience bulletin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12264-024-01343-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-024-01343-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

铁死亡是一种由细胞内铁浓度失衡引起的细胞死亡形式,导致脂质过氧化作用增强。在神经系统疾病中,氧化应激和线粒体损伤均可导致铁下垂,导致神经细胞功能障碍和死亡。泛素-蛋白酶体系统(ubiquitin-proteasome system, UPS)是一种细胞途径,在该途径中,特定的蛋白质被泛素标记,以供蛋白酶体识别和降解。在神经系统疾病中,UPS在调节铁下垂中起着重要作用。在这篇综述中,我们概述了UPS如何调节铁代谢,铁下垂,以及它们在神经系统疾病中的相互作用。此外,我们还讨论了小分子抑制剂的未来应用,并确定了潜在的药物靶点。进一步研究ups介导的铁下垂机制将为神经系统疾病的治疗干预和临床应用提供新的见解和策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Role and Mechanisms of Ubiquitin-Proteasome System-Mediated Ferroptosis in Neurological Disorders.

Ferroptosis is a form of cell death elicited by an imbalance in intracellular iron concentrations, leading to enhanced lipid peroxidation. In neurological disorders, both oxidative stress and mitochondrial damage can contribute to ferroptosis, resulting in nerve cell dysfunction and death. The ubiquitin-proteasome system (UPS) refers to a cellular pathway in which specific proteins are tagged with ubiquitin for recognition and degradation by the proteasome. In neurological conditions, the UPS plays a significant role in regulating ferroptosis. In this review, we outline how the UPS regulates iron metabolism, ferroptosis, and their interplay in neurological diseases. In addition, we discuss the future application of small-molecule inhibitors and identify potential drug targets. Further investigation into the mechanisms of UPS-mediated ferroptosis will provide novel insights and strategies for therapeutic interventions and clinical applications in neurological diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience bulletin
Neuroscience bulletin NEUROSCIENCES-
CiteScore
7.20
自引率
16.10%
发文量
163
审稿时长
6-12 weeks
期刊介绍: Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer. NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信