{"title":"硝普钠对ckd诱导的大鼠认知功能障碍的神经保护作用:CBS和Nrf2/HO-1通路的作用","authors":"Zeinab Hamidizad, Mehri Kadkhodaee, Farzaneh Kianian, Mina Ranjbaran, Fatemeh Heidari, Behjat Seifi","doi":"10.1007/s12017-024-08828-8","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic kidney disease (CKD) is a conceivable new risk factor for cognitive disorder and dementia. Uremic toxicity, oxidative stress, and peripheral-central inflammation have been considered important mediators of CKD-induced nervous disorders. Nitric oxide (NO) is a retrograde neurotransmitter in synapses, and has vital roles in intracellular signaling in neurons. This research aims to determine the effectiveness of NO in CKD-induced cognitive deficits by considering the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) signaling pathway and the important roles of cystathionine beta-synthase (CBS, H2S producing enzyme). Forty rats were divided into four experimental groups: sham, five-sixth (5/6) nephrectomy (5/6Nx, CKD), CKD + NO donor (Sodium nitroprusside, SNP), CKD + SNP and a CBS inhibitor (amino-oxy acetic acid, AOAA). To assess the neurocognitive abilities, eleven weeks after 5/6Nx, behavioral tests (Novel object recognition test, Passive avoidance test, and Barnes maze test) were done. Twelfth week after 5/6Nx, blood urea nitrogen (BUN) and serum creatinine (sCr) levels, as well as the nuclear factor-erythroid factor 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) expression levels and neuronal injury in the hippocampus and prefrontal cortex were assessed. As predicted, the levels of BUN and sCr (both P < 0.001) and neuronal injury in the hippocampus (P < 0.001 for CA1; CA3; DG) and prefrontal cortex (P < 0.001) increased in CKD rats as well as 5/6Nx induced reduction of Nrf2 (both P < 0.001) /HO-1(P < 0.001; P < 0.01 respectively) pathway activity in the hippocampus and prefrontal cortex in CKD rats. Moreover, CKD leads to cognitive disorder and memory loss (Novel object recognition test (NOR) (P < 0.001), Passive avoidance test (PA) (P < 0.001) and Barnes maze (BA) (Escape latency (P < 0.001); Error (P < 0.001)). SNP treatment significantly improved Nrf2 (both P < 0.001) /HO-1 (P < 0.001; P < 0.05 respectively) pathways and neuronal injury (P < 0.001 for CA1; CA3; DG) in the hippocampus and prefrontal cortex in CKD rats as well as enhanced learning and memory ability in CKD rats. However, ameliorating effects of SNP on cognitive disorder (NOR (P < 0.05), PA (P < 0.001) and BA (Escape latency (P < 0.05); Error (P < 0.001)) and Nrf2 (P < 0.01; P < 0.001 in the hippocampus and prefrontal cortex respectively) /HO-1 (P < 0.05 in both) signaling pathway activity were nullified by CBS inhibitor and H2S reduction. In conclusion, this study demonstrated that NO improved CKD-induced cognitive impairment and neuronal death which is may be depended to CBS activity and endogenous H2S levels.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":"27 1","pages":"8"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroprotective Effects of Sodium Nitroprusside on CKD-Induced Cognitive Dysfunction in Rats: Role of CBS and Nrf2/HO-1 Pathway.\",\"authors\":\"Zeinab Hamidizad, Mehri Kadkhodaee, Farzaneh Kianian, Mina Ranjbaran, Fatemeh Heidari, Behjat Seifi\",\"doi\":\"10.1007/s12017-024-08828-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic kidney disease (CKD) is a conceivable new risk factor for cognitive disorder and dementia. Uremic toxicity, oxidative stress, and peripheral-central inflammation have been considered important mediators of CKD-induced nervous disorders. Nitric oxide (NO) is a retrograde neurotransmitter in synapses, and has vital roles in intracellular signaling in neurons. This research aims to determine the effectiveness of NO in CKD-induced cognitive deficits by considering the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) signaling pathway and the important roles of cystathionine beta-synthase (CBS, H2S producing enzyme). Forty rats were divided into four experimental groups: sham, five-sixth (5/6) nephrectomy (5/6Nx, CKD), CKD + NO donor (Sodium nitroprusside, SNP), CKD + SNP and a CBS inhibitor (amino-oxy acetic acid, AOAA). To assess the neurocognitive abilities, eleven weeks after 5/6Nx, behavioral tests (Novel object recognition test, Passive avoidance test, and Barnes maze test) were done. Twelfth week after 5/6Nx, blood urea nitrogen (BUN) and serum creatinine (sCr) levels, as well as the nuclear factor-erythroid factor 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) expression levels and neuronal injury in the hippocampus and prefrontal cortex were assessed. As predicted, the levels of BUN and sCr (both P < 0.001) and neuronal injury in the hippocampus (P < 0.001 for CA1; CA3; DG) and prefrontal cortex (P < 0.001) increased in CKD rats as well as 5/6Nx induced reduction of Nrf2 (both P < 0.001) /HO-1(P < 0.001; P < 0.01 respectively) pathway activity in the hippocampus and prefrontal cortex in CKD rats. Moreover, CKD leads to cognitive disorder and memory loss (Novel object recognition test (NOR) (P < 0.001), Passive avoidance test (PA) (P < 0.001) and Barnes maze (BA) (Escape latency (P < 0.001); Error (P < 0.001)). SNP treatment significantly improved Nrf2 (both P < 0.001) /HO-1 (P < 0.001; P < 0.05 respectively) pathways and neuronal injury (P < 0.001 for CA1; CA3; DG) in the hippocampus and prefrontal cortex in CKD rats as well as enhanced learning and memory ability in CKD rats. However, ameliorating effects of SNP on cognitive disorder (NOR (P < 0.05), PA (P < 0.001) and BA (Escape latency (P < 0.05); Error (P < 0.001)) and Nrf2 (P < 0.01; P < 0.001 in the hippocampus and prefrontal cortex respectively) /HO-1 (P < 0.05 in both) signaling pathway activity were nullified by CBS inhibitor and H2S reduction. In conclusion, this study demonstrated that NO improved CKD-induced cognitive impairment and neuronal death which is may be depended to CBS activity and endogenous H2S levels.</p>\",\"PeriodicalId\":19304,\"journal\":{\"name\":\"NeuroMolecular Medicine\",\"volume\":\"27 1\",\"pages\":\"8\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroMolecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12017-024-08828-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroMolecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-024-08828-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Neuroprotective Effects of Sodium Nitroprusside on CKD-Induced Cognitive Dysfunction in Rats: Role of CBS and Nrf2/HO-1 Pathway.
Chronic kidney disease (CKD) is a conceivable new risk factor for cognitive disorder and dementia. Uremic toxicity, oxidative stress, and peripheral-central inflammation have been considered important mediators of CKD-induced nervous disorders. Nitric oxide (NO) is a retrograde neurotransmitter in synapses, and has vital roles in intracellular signaling in neurons. This research aims to determine the effectiveness of NO in CKD-induced cognitive deficits by considering the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) signaling pathway and the important roles of cystathionine beta-synthase (CBS, H2S producing enzyme). Forty rats were divided into four experimental groups: sham, five-sixth (5/6) nephrectomy (5/6Nx, CKD), CKD + NO donor (Sodium nitroprusside, SNP), CKD + SNP and a CBS inhibitor (amino-oxy acetic acid, AOAA). To assess the neurocognitive abilities, eleven weeks after 5/6Nx, behavioral tests (Novel object recognition test, Passive avoidance test, and Barnes maze test) were done. Twelfth week after 5/6Nx, blood urea nitrogen (BUN) and serum creatinine (sCr) levels, as well as the nuclear factor-erythroid factor 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) expression levels and neuronal injury in the hippocampus and prefrontal cortex were assessed. As predicted, the levels of BUN and sCr (both P < 0.001) and neuronal injury in the hippocampus (P < 0.001 for CA1; CA3; DG) and prefrontal cortex (P < 0.001) increased in CKD rats as well as 5/6Nx induced reduction of Nrf2 (both P < 0.001) /HO-1(P < 0.001; P < 0.01 respectively) pathway activity in the hippocampus and prefrontal cortex in CKD rats. Moreover, CKD leads to cognitive disorder and memory loss (Novel object recognition test (NOR) (P < 0.001), Passive avoidance test (PA) (P < 0.001) and Barnes maze (BA) (Escape latency (P < 0.001); Error (P < 0.001)). SNP treatment significantly improved Nrf2 (both P < 0.001) /HO-1 (P < 0.001; P < 0.05 respectively) pathways and neuronal injury (P < 0.001 for CA1; CA3; DG) in the hippocampus and prefrontal cortex in CKD rats as well as enhanced learning and memory ability in CKD rats. However, ameliorating effects of SNP on cognitive disorder (NOR (P < 0.05), PA (P < 0.001) and BA (Escape latency (P < 0.05); Error (P < 0.001)) and Nrf2 (P < 0.01; P < 0.001 in the hippocampus and prefrontal cortex respectively) /HO-1 (P < 0.05 in both) signaling pathway activity were nullified by CBS inhibitor and H2S reduction. In conclusion, this study demonstrated that NO improved CKD-induced cognitive impairment and neuronal death which is may be depended to CBS activity and endogenous H2S levels.
期刊介绍:
NeuroMolecular Medicine publishes cutting-edge original research articles and critical reviews on the molecular and biochemical basis of neurological disorders. Studies range from genetic analyses of human populations to animal and cell culture models of neurological disorders. Emerging findings concerning the identification of genetic aberrancies and their pathogenic mechanisms at the molecular and cellular levels will be included. Also covered are experimental analyses of molecular cascades involved in the development and adult plasticity of the nervous system, in neurological dysfunction, and in neuronal degeneration and repair. NeuroMolecular Medicine encompasses basic research in the fields of molecular genetics, signal transduction, plasticity, and cell death. The information published in NEMM will provide a window into the future of molecular medicine for the nervous system.