用于生化传感应用的锁频低语消失谐振器(FLOWER)。

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Sartanee Suebka, Adley Gin, Judith Su
{"title":"用于生化传感应用的锁频低语消失谐振器(FLOWER)。","authors":"Sartanee Suebka, Adley Gin, Judith Su","doi":"10.1038/s41596-024-01096-7","DOIUrl":null,"url":null,"abstract":"<p><p>Sensitive, rapid and label-free biochemical sensors are needed for many applications. In this protocol, we describe biochemical detection using FLOWER (frequency locked optical whispering evanescent resonator)-a technique that we have used to detect single protein molecules in aqueous solution as well as exosomes, ribosomes and low part-per-trillion concentrations of volatile organic compounds. Whispering gallery mode microtoroid resonators confine light for extended time periods (hundreds of nanoseconds). When light circulates within the resonator, a portion of the electromagnetic field extends beyond the cavity, forming an evanescent field. This field interacts with bound analytes resulting in a change in the cavity's effective refractive index, which can be tracked by monitoring shifts in the resonance wavelength. The surface of the microtoroid can be functionalized to respond specifically to an analyte or biochemical interaction of interest. The frequency-locking feature of frequency locked optical whispering evanescent resonator means that the instruments respond to perturbations in the surface by very rapidly finding the new resonant frequency. Here we describe microtoroid fabrication (4-6 h), how to couple light into these devices using tapered optical fibers (20-40 min) and procedures for coupling antibodies as well as G-protein coupled receptors to the microtoroid's surface (from 1 h to 1 d depending on the target analyte). In addition, we describe our liquid handling perfusion system as well as the use of a rotary selector valve and custom fluidic chamber to optimize sample delivery. Step-by-step details on how to perform biosensing experiments and analyze the data are described; this takes 1-2 d.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency locked whispering evanescent resonator (FLOWER) for biochemical sensing applications.\",\"authors\":\"Sartanee Suebka, Adley Gin, Judith Su\",\"doi\":\"10.1038/s41596-024-01096-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sensitive, rapid and label-free biochemical sensors are needed for many applications. In this protocol, we describe biochemical detection using FLOWER (frequency locked optical whispering evanescent resonator)-a technique that we have used to detect single protein molecules in aqueous solution as well as exosomes, ribosomes and low part-per-trillion concentrations of volatile organic compounds. Whispering gallery mode microtoroid resonators confine light for extended time periods (hundreds of nanoseconds). When light circulates within the resonator, a portion of the electromagnetic field extends beyond the cavity, forming an evanescent field. This field interacts with bound analytes resulting in a change in the cavity's effective refractive index, which can be tracked by monitoring shifts in the resonance wavelength. The surface of the microtoroid can be functionalized to respond specifically to an analyte or biochemical interaction of interest. The frequency-locking feature of frequency locked optical whispering evanescent resonator means that the instruments respond to perturbations in the surface by very rapidly finding the new resonant frequency. Here we describe microtoroid fabrication (4-6 h), how to couple light into these devices using tapered optical fibers (20-40 min) and procedures for coupling antibodies as well as G-protein coupled receptors to the microtoroid's surface (from 1 h to 1 d depending on the target analyte). In addition, we describe our liquid handling perfusion system as well as the use of a rotary selector valve and custom fluidic chamber to optimize sample delivery. Step-by-step details on how to perform biosensing experiments and analyze the data are described; this takes 1-2 d.</p>\",\"PeriodicalId\":18901,\"journal\":{\"name\":\"Nature Protocols\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Protocols\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41596-024-01096-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01096-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

许多应用需要灵敏、快速和无标签的生化传感器。在本协议中,我们描述了使用FLOWER(频率锁定光学低语倏逝谐振器)的生化检测-一种我们用于检测水溶液中的单个蛋白质分子以及外显体,核糖体和低浓度挥发性有机化合物的技术。低语廊模式微环谐振器将光限制在较长的时间内(数百纳秒)。当光在谐振腔内循环时,一部分电磁场会延伸到腔外,形成一个倏逝场。该场与结合的分析物相互作用,导致腔的有效折射率的变化,这可以通过监测共振波长的变化来跟踪。微环表面可以被功能化,以对分析物或感兴趣的生化相互作用作出特异性反应。锁频光学低语倏逝谐振器的锁频特性意味着仪器对表面扰动的响应是通过非常迅速地找到新的谐振频率来实现的。在这里,我们描述了微环形体的制造(4-6小时),如何使用锥形光纤将光耦合到这些器件中(20-40分钟),以及将抗体和g蛋白偶联受体偶联到微环形体表面的过程(1小时至1天,具体取决于目标分析物)。此外,我们描述了我们的液体处理灌注系统,以及使用旋转选择阀和定制的流体室来优化样品输送。如何进行生物传感实验和分析数据的一步一步的细节描述;这需要1-2天。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency locked whispering evanescent resonator (FLOWER) for biochemical sensing applications.

Sensitive, rapid and label-free biochemical sensors are needed for many applications. In this protocol, we describe biochemical detection using FLOWER (frequency locked optical whispering evanescent resonator)-a technique that we have used to detect single protein molecules in aqueous solution as well as exosomes, ribosomes and low part-per-trillion concentrations of volatile organic compounds. Whispering gallery mode microtoroid resonators confine light for extended time periods (hundreds of nanoseconds). When light circulates within the resonator, a portion of the electromagnetic field extends beyond the cavity, forming an evanescent field. This field interacts with bound analytes resulting in a change in the cavity's effective refractive index, which can be tracked by monitoring shifts in the resonance wavelength. The surface of the microtoroid can be functionalized to respond specifically to an analyte or biochemical interaction of interest. The frequency-locking feature of frequency locked optical whispering evanescent resonator means that the instruments respond to perturbations in the surface by very rapidly finding the new resonant frequency. Here we describe microtoroid fabrication (4-6 h), how to couple light into these devices using tapered optical fibers (20-40 min) and procedures for coupling antibodies as well as G-protein coupled receptors to the microtoroid's surface (from 1 h to 1 d depending on the target analyte). In addition, we describe our liquid handling perfusion system as well as the use of a rotary selector valve and custom fluidic chamber to optimize sample delivery. Step-by-step details on how to perform biosensing experiments and analyze the data are described; this takes 1-2 d.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信