通过选定的药物化合物调节PI3K/AKT信号和DFT模型可减轻卡拉胶诱导的大鼠炎症和氧化应激。

IF 3.1 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Ahmed A Abd-Rabou, Marwa Kamal, Hussam Y Alharbi, Majed S Aljohani, Mohamed A El-Atawy, Mohamed S Kishta
{"title":"通过选定的药物化合物调节PI3K/AKT信号和DFT模型可减轻卡拉胶诱导的大鼠炎症和氧化应激。","authors":"Ahmed A Abd-Rabou, Marwa Kamal, Hussam Y Alharbi, Majed S Aljohani, Mohamed A El-Atawy, Mohamed S Kishta","doi":"10.1007/s00210-024-03689-1","DOIUrl":null,"url":null,"abstract":"<p><p>The main goal of the current study is to estimate the in vivo anti-inflammatory/antioxidant ability of four selected pharmaceutical compounds: bisoprolol (Biso), piracetam (Pirc), clopidogrel (Clop), and cinnarizine (Cinna). Indomethacin (Indo) was used as a reference drug to perform a realistic comparison between the four compounds and the Indo in vivo through tracking PI3K/AKT signaling and computational chemistry via density functional theory (DFT) modeling to analyze the electrostatic potential across the molecule and provide insight into the regions for receptor binding of the studied compounds. To achieve the safe dose of these compounds, cytotoxicity was performed against isolated adipose tissue-derived mesenchymal stem cells (ADMSCs) using MTT assay. In vivo determination of anti-inflammatory/antioxidant biochemical and genetic parameters of the tested compounds against rats' paw carrageenan (Carg)-induced inflammation was assessed. The data showed that there was no significant different in cell viability of ADMSCs until dose 10 µg/ml, so we used this concentration for in vivo experiments. Carg high significantly increased the volume of the paw edema at 120 min and 180 min compared to the control group (p < 0.01). Cinna (10 mg/kg), relatively similar to Indo, was the most anti-inflammatory compound among others, followed by Clop and Pirc, where they decreased the volume of the paw edema significantly (p < 0.01) at 120 min and 180 min compared to the Carg-group. Microscopic examination confirmed the above results indicating that paw tissue of Carg-group shows edema formation and massive inflammation compared with control. In comparison to the control group, Carg high significantly increased the malondialdehyde (MDA) levels (p < 0.01), whereas, at the concentration 10 mg/kg of the tested compounds, the MDA concentrations significantly reduced, especially the Clop, Cinna, and Indo-treated groups. On the contrary, total antioxidant capacity (TAC) and 5-lipoxygenase (5-LOP) concentrations were significantly decreased in Carg-group (p < 0.01) compared with control. Cyclooxygenase-2 (COX-2), phosphoinositide 3-kinase (PI3k), and protein kinase B (AKT) gene expressions were high and significantly upregulated in Carg-group compared to control, while the tested compounds downregulated their expressions compared to the Carg-group. Moreover, COX-2, interleukins (IL-10/IL-6/IL-4), PI3k, and AKT protein concentrations were high and significantly increased in Carg-group compared to control, however the tested compounds were high and significantly decreased their concentrations compared to the Carg-group. DFT modeling aligned with the biochemical data and indicated that Cinna emerges as the most reactive drug with high polarizability (302.741 a.u.), a relative small FMOs energy gap (ΔE 5.002 eV), relative low molecular hardness (2.501 eV), relative high softness (0.400 eV<sup>-1</sup>), and distinct nucleophilic/electrophilic interaction sites, indicating strong specific interactions with biological receptor. In conclusion, this study revealed the ability of Cinna to potentially suppress inflammation in in vivo Carg-induced rat paw inflammation model through inhibition of PI3K/AKT signaling and DFT modeling mediated by oxidative stress and inflammatory mediators.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation of PI3K/AKT signaling and DFT modeling via selected pharmaceutical compounds attenuates carrageenan-induced inflammation and oxidative stress in rats.\",\"authors\":\"Ahmed A Abd-Rabou, Marwa Kamal, Hussam Y Alharbi, Majed S Aljohani, Mohamed A El-Atawy, Mohamed S Kishta\",\"doi\":\"10.1007/s00210-024-03689-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The main goal of the current study is to estimate the in vivo anti-inflammatory/antioxidant ability of four selected pharmaceutical compounds: bisoprolol (Biso), piracetam (Pirc), clopidogrel (Clop), and cinnarizine (Cinna). Indomethacin (Indo) was used as a reference drug to perform a realistic comparison between the four compounds and the Indo in vivo through tracking PI3K/AKT signaling and computational chemistry via density functional theory (DFT) modeling to analyze the electrostatic potential across the molecule and provide insight into the regions for receptor binding of the studied compounds. To achieve the safe dose of these compounds, cytotoxicity was performed against isolated adipose tissue-derived mesenchymal stem cells (ADMSCs) using MTT assay. In vivo determination of anti-inflammatory/antioxidant biochemical and genetic parameters of the tested compounds against rats' paw carrageenan (Carg)-induced inflammation was assessed. The data showed that there was no significant different in cell viability of ADMSCs until dose 10 µg/ml, so we used this concentration for in vivo experiments. Carg high significantly increased the volume of the paw edema at 120 min and 180 min compared to the control group (p < 0.01). Cinna (10 mg/kg), relatively similar to Indo, was the most anti-inflammatory compound among others, followed by Clop and Pirc, where they decreased the volume of the paw edema significantly (p < 0.01) at 120 min and 180 min compared to the Carg-group. Microscopic examination confirmed the above results indicating that paw tissue of Carg-group shows edema formation and massive inflammation compared with control. In comparison to the control group, Carg high significantly increased the malondialdehyde (MDA) levels (p < 0.01), whereas, at the concentration 10 mg/kg of the tested compounds, the MDA concentrations significantly reduced, especially the Clop, Cinna, and Indo-treated groups. On the contrary, total antioxidant capacity (TAC) and 5-lipoxygenase (5-LOP) concentrations were significantly decreased in Carg-group (p < 0.01) compared with control. Cyclooxygenase-2 (COX-2), phosphoinositide 3-kinase (PI3k), and protein kinase B (AKT) gene expressions were high and significantly upregulated in Carg-group compared to control, while the tested compounds downregulated their expressions compared to the Carg-group. Moreover, COX-2, interleukins (IL-10/IL-6/IL-4), PI3k, and AKT protein concentrations were high and significantly increased in Carg-group compared to control, however the tested compounds were high and significantly decreased their concentrations compared to the Carg-group. DFT modeling aligned with the biochemical data and indicated that Cinna emerges as the most reactive drug with high polarizability (302.741 a.u.), a relative small FMOs energy gap (ΔE 5.002 eV), relative low molecular hardness (2.501 eV), relative high softness (0.400 eV<sup>-1</sup>), and distinct nucleophilic/electrophilic interaction sites, indicating strong specific interactions with biological receptor. In conclusion, this study revealed the ability of Cinna to potentially suppress inflammation in in vivo Carg-induced rat paw inflammation model through inhibition of PI3K/AKT signaling and DFT modeling mediated by oxidative stress and inflammatory mediators.</p>\",\"PeriodicalId\":18876,\"journal\":{\"name\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00210-024-03689-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-024-03689-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的主要目的是评估四种选定的药物化合物的体内抗炎/抗氧化能力:比索洛尔(Biso),吡拉西坦(Pirc),氯吡格雷(Clop)和肉桂嗪(Cinna)。以吲哚美辛(Indomethacin, Indo)为参比药物,通过跟踪PI3K/AKT信号传导和计算化学,通过密度泛函数理论(DFT)建模分析分子间的静电电位,并深入了解所研究化合物的受体结合区域,对四种化合物和Indo进行体内比较。为了达到这些化合物的安全剂量,使用MTT法对分离的脂肪组织源性间充质干细胞(ADMSCs)进行细胞毒性试验。在体内测定所试化合物对大鼠爪角叉菜胶(carrageenan, Carg)诱导的炎症的抗炎/抗氧化生化和遗传参数。数据显示,在剂量为10µg/ml之前,ADMSCs的细胞活力没有显著差异,因此我们采用该浓度进行体内实验。与对照组相比,Carg high在120 min和180 min时显著增加了足跖水肿体积(p -1),并且存在明显的亲核/亲电相互作用位点,表明与生物受体有很强的特异性相互作用。综上所述,本研究揭示了肉桂通过抑制氧化应激和炎症介质介导的PI3K/AKT信号通路和DFT建模,在体内carg诱导的大鼠足部炎症模型中具有潜在的抑制炎症的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modulation of PI3K/AKT signaling and DFT modeling via selected pharmaceutical compounds attenuates carrageenan-induced inflammation and oxidative stress in rats.

The main goal of the current study is to estimate the in vivo anti-inflammatory/antioxidant ability of four selected pharmaceutical compounds: bisoprolol (Biso), piracetam (Pirc), clopidogrel (Clop), and cinnarizine (Cinna). Indomethacin (Indo) was used as a reference drug to perform a realistic comparison between the four compounds and the Indo in vivo through tracking PI3K/AKT signaling and computational chemistry via density functional theory (DFT) modeling to analyze the electrostatic potential across the molecule and provide insight into the regions for receptor binding of the studied compounds. To achieve the safe dose of these compounds, cytotoxicity was performed against isolated adipose tissue-derived mesenchymal stem cells (ADMSCs) using MTT assay. In vivo determination of anti-inflammatory/antioxidant biochemical and genetic parameters of the tested compounds against rats' paw carrageenan (Carg)-induced inflammation was assessed. The data showed that there was no significant different in cell viability of ADMSCs until dose 10 µg/ml, so we used this concentration for in vivo experiments. Carg high significantly increased the volume of the paw edema at 120 min and 180 min compared to the control group (p < 0.01). Cinna (10 mg/kg), relatively similar to Indo, was the most anti-inflammatory compound among others, followed by Clop and Pirc, where they decreased the volume of the paw edema significantly (p < 0.01) at 120 min and 180 min compared to the Carg-group. Microscopic examination confirmed the above results indicating that paw tissue of Carg-group shows edema formation and massive inflammation compared with control. In comparison to the control group, Carg high significantly increased the malondialdehyde (MDA) levels (p < 0.01), whereas, at the concentration 10 mg/kg of the tested compounds, the MDA concentrations significantly reduced, especially the Clop, Cinna, and Indo-treated groups. On the contrary, total antioxidant capacity (TAC) and 5-lipoxygenase (5-LOP) concentrations were significantly decreased in Carg-group (p < 0.01) compared with control. Cyclooxygenase-2 (COX-2), phosphoinositide 3-kinase (PI3k), and protein kinase B (AKT) gene expressions were high and significantly upregulated in Carg-group compared to control, while the tested compounds downregulated their expressions compared to the Carg-group. Moreover, COX-2, interleukins (IL-10/IL-6/IL-4), PI3k, and AKT protein concentrations were high and significantly increased in Carg-group compared to control, however the tested compounds were high and significantly decreased their concentrations compared to the Carg-group. DFT modeling aligned with the biochemical data and indicated that Cinna emerges as the most reactive drug with high polarizability (302.741 a.u.), a relative small FMOs energy gap (ΔE 5.002 eV), relative low molecular hardness (2.501 eV), relative high softness (0.400 eV-1), and distinct nucleophilic/electrophilic interaction sites, indicating strong specific interactions with biological receptor. In conclusion, this study revealed the ability of Cinna to potentially suppress inflammation in in vivo Carg-induced rat paw inflammation model through inhibition of PI3K/AKT signaling and DFT modeling mediated by oxidative stress and inflammatory mediators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
5.60%
发文量
142
审稿时长
4-8 weeks
期刊介绍: Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信