{"title":"大肠杆菌旁系冷休克蛋白的分子进化:不对称分化和蛋白功能网络的研究。","authors":"Alankar Roy, Sujay Ray","doi":"10.1007/s12033-024-01333-0","DOIUrl":null,"url":null,"abstract":"<p><p>Nine homologous Cold Shock Proteins (Csps) have been recognized in the E.coli Cold Shock Domain gene family. These Csps function as RNA chaperones. This study aims to establish the evolutionary relationships among these genes by identifying and classifying their paralogous counterparts. It focuses on the physicochemical, structural, and functional analysis of the genes to explore the phylogeny of the Csp gene family. Computational tools were employed for protein molecular modeling, conformational analysis, functional studies, and duplication-divergence assessments. The research also examined amino acid conservation, protein mutations, domain-motif patterns, and evolutionary residue communities to better understand residual interactions, evolutionary coupling, and co-evolution. H33, M5, W11 and F53 residues were highly conserved within the protein family. It was further seen that residues M5, G17, G58, G61, P62, A64, V67 were intolerant to any kind of mutation whereas G3, D40, G41, Y42, S44, T54, T68, S69 were most tolerable towards substitutions. The study of residue communities displayed that the strongest residue coupling was observed in N13, F18, S27, F31, and W11. It was observed that all the gene pairs except CspF/CspH had new motifs generated over time. It was ascertained that all the gene pairs underwent asymmetric expression divergence after duplication. The K<sub>a</sub>/ K<sub>s</sub> ratio also revealed that all residues undertook neutral and purifying selection pressure. New functions were seen to develop in gene pairs evident from generation of new motifs. The discovery of new motifs and functions in Csps highlights their adaptive versatility, crucial for E. coli's resilience to environmental stressors and valuable for understanding bacterial stress response mechanisms. These findings will pave the way for future investigations into Csp evolution, with potential applications in microbial ecology and antimicrobial strategy development.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Evolution of Paralogous Cold Shock Proteins in E. coli: A Study of Asymmetric Divergence and Protein Functional Networks.\",\"authors\":\"Alankar Roy, Sujay Ray\",\"doi\":\"10.1007/s12033-024-01333-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nine homologous Cold Shock Proteins (Csps) have been recognized in the E.coli Cold Shock Domain gene family. These Csps function as RNA chaperones. This study aims to establish the evolutionary relationships among these genes by identifying and classifying their paralogous counterparts. It focuses on the physicochemical, structural, and functional analysis of the genes to explore the phylogeny of the Csp gene family. Computational tools were employed for protein molecular modeling, conformational analysis, functional studies, and duplication-divergence assessments. The research also examined amino acid conservation, protein mutations, domain-motif patterns, and evolutionary residue communities to better understand residual interactions, evolutionary coupling, and co-evolution. H33, M5, W11 and F53 residues were highly conserved within the protein family. It was further seen that residues M5, G17, G58, G61, P62, A64, V67 were intolerant to any kind of mutation whereas G3, D40, G41, Y42, S44, T54, T68, S69 were most tolerable towards substitutions. The study of residue communities displayed that the strongest residue coupling was observed in N13, F18, S27, F31, and W11. It was observed that all the gene pairs except CspF/CspH had new motifs generated over time. It was ascertained that all the gene pairs underwent asymmetric expression divergence after duplication. The K<sub>a</sub>/ K<sub>s</sub> ratio also revealed that all residues undertook neutral and purifying selection pressure. New functions were seen to develop in gene pairs evident from generation of new motifs. The discovery of new motifs and functions in Csps highlights their adaptive versatility, crucial for E. coli's resilience to environmental stressors and valuable for understanding bacterial stress response mechanisms. These findings will pave the way for future investigations into Csp evolution, with potential applications in microbial ecology and antimicrobial strategy development.</p>\",\"PeriodicalId\":18865,\"journal\":{\"name\":\"Molecular Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12033-024-01333-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01333-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Molecular Evolution of Paralogous Cold Shock Proteins in E. coli: A Study of Asymmetric Divergence and Protein Functional Networks.
Nine homologous Cold Shock Proteins (Csps) have been recognized in the E.coli Cold Shock Domain gene family. These Csps function as RNA chaperones. This study aims to establish the evolutionary relationships among these genes by identifying and classifying their paralogous counterparts. It focuses on the physicochemical, structural, and functional analysis of the genes to explore the phylogeny of the Csp gene family. Computational tools were employed for protein molecular modeling, conformational analysis, functional studies, and duplication-divergence assessments. The research also examined amino acid conservation, protein mutations, domain-motif patterns, and evolutionary residue communities to better understand residual interactions, evolutionary coupling, and co-evolution. H33, M5, W11 and F53 residues were highly conserved within the protein family. It was further seen that residues M5, G17, G58, G61, P62, A64, V67 were intolerant to any kind of mutation whereas G3, D40, G41, Y42, S44, T54, T68, S69 were most tolerable towards substitutions. The study of residue communities displayed that the strongest residue coupling was observed in N13, F18, S27, F31, and W11. It was observed that all the gene pairs except CspF/CspH had new motifs generated over time. It was ascertained that all the gene pairs underwent asymmetric expression divergence after duplication. The Ka/ Ks ratio also revealed that all residues undertook neutral and purifying selection pressure. New functions were seen to develop in gene pairs evident from generation of new motifs. The discovery of new motifs and functions in Csps highlights their adaptive versatility, crucial for E. coli's resilience to environmental stressors and valuable for understanding bacterial stress response mechanisms. These findings will pave the way for future investigations into Csp evolution, with potential applications in microbial ecology and antimicrobial strategy development.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.