废米粉和赤泥制备的磁性光催化复合材料。

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2024-12-31 DOI:10.3390/nano15010051
Qing Liu, Wanying Ying, Hailing Gou, Minghui Li, Ke Huang, Renyuan Xu, Guanzhi Ding, Pengyu Wang, Shuoping Chen
{"title":"废米粉和赤泥制备的磁性光催化复合材料。","authors":"Qing Liu, Wanying Ying, Hailing Gou, Minghui Li, Ke Huang, Renyuan Xu, Guanzhi Ding, Pengyu Wang, Shuoping Chen","doi":"10.3390/nano15010051","DOIUrl":null,"url":null,"abstract":"<p><p>This study is the first to convert two waste materials, waste rice noodles (WRN) and red mud (RM), into a low-cost, high-value magnetic photocatalytic composite. WRN was processed via a hydrothermal method to produce a solution containing carbon quantum dots (CQDs). Simultaneously, RM was dissolved in acid to form a Fe<sup>3+</sup> ion-rich solution, which was subsequently mixed with the CQDs solution and underwent hydrothermal treatment. During this process, the Fe<sup>3+</sup> ions in RM were transformed into the maghemite (γ-Fe<sub>2</sub>O<sub>3</sub>) phase, while CQDs were incorporated onto the γ-Fe<sub>2</sub>O<sub>3</sub> surface, resulting in the CQDs/γ-Fe<sub>2</sub>O<sub>3</sub> magnetic photocatalytic composite. Experimental results demonstrated that the WRN-derived CQDs not only facilitated the formation of the magnetic γ-Fe<sub>2</sub>O<sub>3</sub> phase but also promoted a synergistic interaction between CQDs and γ-Fe<sub>2</sub>O<sub>3</sub>, enhancing electron-hole pair separation and boosting the production of reactive radicals such as O<sub>2</sub><sup>·-</sup> and ·OH. Under optimized conditions (pH = 8, carbon loading: 10 wt%), the CQDs/γ-Fe<sub>2</sub>O<sub>3</sub> composite exhibited good photocatalytic performance against methylene blue, achieving a 97.6% degradation rate within 480 min and a degradation rate constant of 5.99 × 10<sup>-3</sup> min<sup>-1</sup>, significantly outperforming RM and commercial γ-Fe<sub>2</sub>O<sub>3</sub> powder. Beyond methylene blue, this composite also effectively degraded common organic dyes, including malachite green, methyl violet, basic fuchsin, and rhodamine B, with particularly high efficiency against malachite green, reaching a degradation rate constant of 5.465 × 10<sup>-2</sup> min<sup>-1</sup>. Additionally, due to its soft magnetic properties (saturation magnetization intensity: 16.7 emu/g, residual magnetization intensity: 2.2 emu/g), the material could be conveniently recovered and reused after photocatalytic cycles. Even after 10 cycles, it retained over 98% recovery and 96% photocatalytic degradation efficiency, underscoring its potential for cost-effective, large-scale photocatalytic water purification.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723050/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Magnetic Photocatalytic Composite Derived from Waste Rice Noodle and Red Mud.\",\"authors\":\"Qing Liu, Wanying Ying, Hailing Gou, Minghui Li, Ke Huang, Renyuan Xu, Guanzhi Ding, Pengyu Wang, Shuoping Chen\",\"doi\":\"10.3390/nano15010051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study is the first to convert two waste materials, waste rice noodles (WRN) and red mud (RM), into a low-cost, high-value magnetic photocatalytic composite. WRN was processed via a hydrothermal method to produce a solution containing carbon quantum dots (CQDs). Simultaneously, RM was dissolved in acid to form a Fe<sup>3+</sup> ion-rich solution, which was subsequently mixed with the CQDs solution and underwent hydrothermal treatment. During this process, the Fe<sup>3+</sup> ions in RM were transformed into the maghemite (γ-Fe<sub>2</sub>O<sub>3</sub>) phase, while CQDs were incorporated onto the γ-Fe<sub>2</sub>O<sub>3</sub> surface, resulting in the CQDs/γ-Fe<sub>2</sub>O<sub>3</sub> magnetic photocatalytic composite. Experimental results demonstrated that the WRN-derived CQDs not only facilitated the formation of the magnetic γ-Fe<sub>2</sub>O<sub>3</sub> phase but also promoted a synergistic interaction between CQDs and γ-Fe<sub>2</sub>O<sub>3</sub>, enhancing electron-hole pair separation and boosting the production of reactive radicals such as O<sub>2</sub><sup>·-</sup> and ·OH. Under optimized conditions (pH = 8, carbon loading: 10 wt%), the CQDs/γ-Fe<sub>2</sub>O<sub>3</sub> composite exhibited good photocatalytic performance against methylene blue, achieving a 97.6% degradation rate within 480 min and a degradation rate constant of 5.99 × 10<sup>-3</sup> min<sup>-1</sup>, significantly outperforming RM and commercial γ-Fe<sub>2</sub>O<sub>3</sub> powder. Beyond methylene blue, this composite also effectively degraded common organic dyes, including malachite green, methyl violet, basic fuchsin, and rhodamine B, with particularly high efficiency against malachite green, reaching a degradation rate constant of 5.465 × 10<sup>-2</sup> min<sup>-1</sup>. Additionally, due to its soft magnetic properties (saturation magnetization intensity: 16.7 emu/g, residual magnetization intensity: 2.2 emu/g), the material could be conveniently recovered and reused after photocatalytic cycles. Even after 10 cycles, it retained over 98% recovery and 96% photocatalytic degradation efficiency, underscoring its potential for cost-effective, large-scale photocatalytic water purification.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723050/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15010051\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15010051","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究首次将废米线(WRN)和赤泥(RM)两种废弃物转化为低成本、高价值的磁性光催化复合材料。采用水热法制备碳量子点(CQDs)溶液。同时,将RM溶于酸中形成富Fe3+溶液,与CQDs溶液混合,进行水热处理。在此过程中,RM中的Fe3+离子转化为磁赤铁矿(γ-Fe2O3)相,而CQDs则结合到γ-Fe2O3表面,形成CQDs/γ-Fe2O3磁性光催化复合材料。实验结果表明,wrn衍生的CQDs不仅促进了磁性γ-Fe2O3相的形成,而且促进了CQDs与γ-Fe2O3之间的协同相互作用,促进了电子-空穴对的分离,促进了O2·-和·OH等活性自由基的产生。在优化条件下(pH = 8,碳负载:10 wt%), CQDs/γ-Fe2O3复合材料对亚甲基蓝表现出良好的光催化性能,在480 min内降解率达到97.6%,降解速率常数为5.99 × 10-3 min-1,明显优于RM和商业γ-Fe2O3粉末。除亚甲基蓝外,该复合材料还能有效降解孔雀石绿、甲基紫、碱性紫红、罗丹明B等常见有机染料,对孔雀石绿的降解效率特别高,降解速率常数为5.465 × 10-2 min-1。此外,由于材料具有软磁特性(饱和磁化强度为16.7 emu/g,剩余磁化强度为2.2 emu/g),光催化循环后可以方便地回收再利用。即使经过10次循环,它仍保持98%以上的回收率和96%的光催化降解效率,强调其具有成本效益,大规模光催化水净化的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Magnetic Photocatalytic Composite Derived from Waste Rice Noodle and Red Mud.

This study is the first to convert two waste materials, waste rice noodles (WRN) and red mud (RM), into a low-cost, high-value magnetic photocatalytic composite. WRN was processed via a hydrothermal method to produce a solution containing carbon quantum dots (CQDs). Simultaneously, RM was dissolved in acid to form a Fe3+ ion-rich solution, which was subsequently mixed with the CQDs solution and underwent hydrothermal treatment. During this process, the Fe3+ ions in RM were transformed into the maghemite (γ-Fe2O3) phase, while CQDs were incorporated onto the γ-Fe2O3 surface, resulting in the CQDs/γ-Fe2O3 magnetic photocatalytic composite. Experimental results demonstrated that the WRN-derived CQDs not only facilitated the formation of the magnetic γ-Fe2O3 phase but also promoted a synergistic interaction between CQDs and γ-Fe2O3, enhancing electron-hole pair separation and boosting the production of reactive radicals such as O2·- and ·OH. Under optimized conditions (pH = 8, carbon loading: 10 wt%), the CQDs/γ-Fe2O3 composite exhibited good photocatalytic performance against methylene blue, achieving a 97.6% degradation rate within 480 min and a degradation rate constant of 5.99 × 10-3 min-1, significantly outperforming RM and commercial γ-Fe2O3 powder. Beyond methylene blue, this composite also effectively degraded common organic dyes, including malachite green, methyl violet, basic fuchsin, and rhodamine B, with particularly high efficiency against malachite green, reaching a degradation rate constant of 5.465 × 10-2 min-1. Additionally, due to its soft magnetic properties (saturation magnetization intensity: 16.7 emu/g, residual magnetization intensity: 2.2 emu/g), the material could be conveniently recovered and reused after photocatalytic cycles. Even after 10 cycles, it retained over 98% recovery and 96% photocatalytic degradation efficiency, underscoring its potential for cost-effective, large-scale photocatalytic water purification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信