Philip N Bartlett, C H Kees de Groot, Victoria K Greenacre, Ruomeng Huang, Yasir J Noori, Gillian Reid, Shibin Thomas
{"title":"电沉积二维层状金属硫属化合物的分子前驱体。","authors":"Philip N Bartlett, C H Kees de Groot, Victoria K Greenacre, Ruomeng Huang, Yasir J Noori, Gillian Reid, Shibin Thomas","doi":"10.1038/s41570-024-00671-6","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional transition metal dichalcogenides (TMDCs) are highly anisotropic, layered semiconductors, with the general formula ME<sub>2</sub> (M = metal, E = sulfur, selenium or tellurium). Much current research in this field focusses on TMDCs for catalysis and energy applications; they are also attracting great interest for next-generation transistor and optoelectronic devices. The latter high-tech applications place stringent requirements on the stoichiometry, crystallinity, morphology and electronic properties of monolayer and few-layer materials. As a solution-based process, wherein the material grows specifically on the electrode surface, electrodeposition offers great promise as a readily scalable, area-selective growth process. This Review explores the state-of-the-art for TMDC electrodeposition, highlighting how the choice of precursor (or precursors), solvent and electrode designs, with novel 'device-ready' electrode geometries, influence their morphologies and properties, thus enabling the direct growth of ultrathin, highly anisotropic 2D TMDCs and much scope for future advances.</p>","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":" ","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular precursors for the electrodeposition of 2D-layered metal chalcogenides.\",\"authors\":\"Philip N Bartlett, C H Kees de Groot, Victoria K Greenacre, Ruomeng Huang, Yasir J Noori, Gillian Reid, Shibin Thomas\",\"doi\":\"10.1038/s41570-024-00671-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two-dimensional transition metal dichalcogenides (TMDCs) are highly anisotropic, layered semiconductors, with the general formula ME<sub>2</sub> (M = metal, E = sulfur, selenium or tellurium). Much current research in this field focusses on TMDCs for catalysis and energy applications; they are also attracting great interest for next-generation transistor and optoelectronic devices. The latter high-tech applications place stringent requirements on the stoichiometry, crystallinity, morphology and electronic properties of monolayer and few-layer materials. As a solution-based process, wherein the material grows specifically on the electrode surface, electrodeposition offers great promise as a readily scalable, area-selective growth process. This Review explores the state-of-the-art for TMDC electrodeposition, highlighting how the choice of precursor (or precursors), solvent and electrode designs, with novel 'device-ready' electrode geometries, influence their morphologies and properties, thus enabling the direct growth of ultrathin, highly anisotropic 2D TMDCs and much scope for future advances.</p>\",\"PeriodicalId\":18849,\"journal\":{\"name\":\"Nature reviews. Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature reviews. Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s41570-024-00671-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature reviews. Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41570-024-00671-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Molecular precursors for the electrodeposition of 2D-layered metal chalcogenides.
Two-dimensional transition metal dichalcogenides (TMDCs) are highly anisotropic, layered semiconductors, with the general formula ME2 (M = metal, E = sulfur, selenium or tellurium). Much current research in this field focusses on TMDCs for catalysis and energy applications; they are also attracting great interest for next-generation transistor and optoelectronic devices. The latter high-tech applications place stringent requirements on the stoichiometry, crystallinity, morphology and electronic properties of monolayer and few-layer materials. As a solution-based process, wherein the material grows specifically on the electrode surface, electrodeposition offers great promise as a readily scalable, area-selective growth process. This Review explores the state-of-the-art for TMDC electrodeposition, highlighting how the choice of precursor (or precursors), solvent and electrode designs, with novel 'device-ready' electrode geometries, influence their morphologies and properties, thus enabling the direct growth of ultrathin, highly anisotropic 2D TMDCs and much scope for future advances.
期刊介绍:
Nature Reviews Chemistry is an online-only journal that publishes Reviews, Perspectives, and Comments on various disciplines within chemistry. The Reviews aim to offer balanced and objective analyses of selected topics, providing clear descriptions of relevant scientific literature. The content is designed to be accessible to recent graduates in any chemistry-related discipline while also offering insights for principal investigators and industry-based research scientists. Additionally, Reviews should provide the authors' perspectives on future directions and opinions regarding the major challenges faced by researchers in the field.