优化禽群禽流感接触者追踪工作。

IF 3.7 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2025-01-01 Epub Date: 2025-01-08 DOI:10.1098/rsif.2024.0523
Sébastien Lambert, Lisa Fourtune, Peter H F Hobbelen, Julie Baca, José L Gonzales, Armin R W Elbers, Timothée Vergne
{"title":"优化禽群禽流感接触者追踪工作。","authors":"Sébastien Lambert, Lisa Fourtune, Peter H F Hobbelen, Julie Baca, José L Gonzales, Armin R W Elbers, Timothée Vergne","doi":"10.1098/rsif.2024.0523","DOIUrl":null,"url":null,"abstract":"<p><p>Contact tracing is commonly used to manage infectious diseases of both humans and animals. It aims to detect early and control potentially infected individuals or farms that had contact with infectious cases. Because it is very resource-intensive, contact tracing is usually performed on a pre-defined time window, based on previous knowledge of the duration of the incubation period. However, pre-defined time windows may not be always relevant, reducing the efficiency of contact tracing. In this study, we estimated the day when farms were first infected with highly pathogenic avian influenza viruses, a devastating pathogen causing severe socio-economic damage in domestic poultry. The estimation was performed by fitting a stochastic mechanistic model to observed daily mortality data from 63 infected poultry farms in France and The Netherlands, using approximate Bayesian computation. Independent of the poultry species or country, the estimates of the time of first infection ranged between 3.4 (95% credible interval-CrI: 2.6, 4.6) and 19.9 (95% CrI: 11.9, 31.3) days prior to the last observation. We developed an online application to provide real-time support to policymakers by estimating realistic ranges of dates of first infection to inform contact tracing and improve its efficiency.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 222","pages":"20240523"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706645/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimizing contact tracing for avian influenza in poultry flocks.\",\"authors\":\"Sébastien Lambert, Lisa Fourtune, Peter H F Hobbelen, Julie Baca, José L Gonzales, Armin R W Elbers, Timothée Vergne\",\"doi\":\"10.1098/rsif.2024.0523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Contact tracing is commonly used to manage infectious diseases of both humans and animals. It aims to detect early and control potentially infected individuals or farms that had contact with infectious cases. Because it is very resource-intensive, contact tracing is usually performed on a pre-defined time window, based on previous knowledge of the duration of the incubation period. However, pre-defined time windows may not be always relevant, reducing the efficiency of contact tracing. In this study, we estimated the day when farms were first infected with highly pathogenic avian influenza viruses, a devastating pathogen causing severe socio-economic damage in domestic poultry. The estimation was performed by fitting a stochastic mechanistic model to observed daily mortality data from 63 infected poultry farms in France and The Netherlands, using approximate Bayesian computation. Independent of the poultry species or country, the estimates of the time of first infection ranged between 3.4 (95% credible interval-CrI: 2.6, 4.6) and 19.9 (95% CrI: 11.9, 31.3) days prior to the last observation. We developed an online application to provide real-time support to policymakers by estimating realistic ranges of dates of first infection to inform contact tracing and improve its efficiency.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"22 222\",\"pages\":\"20240523\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706645/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2024.0523\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0523","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

接触者追踪通常用于管理人类和动物的传染病。它的目的是及早发现和控制可能受感染的个人或与感染病例有过接触的农场。由于接触者追踪需要大量资源,因此通常根据先前对潜伏期持续时间的了解,在一个预定义的时间窗口内进行。然而,预定义的时间窗口可能并不总是相关的,从而降低了接触者追踪的效率。在这项研究中,我们估计了农场首次感染高致病性禽流感病毒的时间,这是一种对家禽造成严重社会经济损害的破坏性病原体。使用近似贝叶斯计算,通过拟合随机机制模型对法国和荷兰63个受感染家禽养殖场观察到的每日死亡率数据进行估计。与家禽种类或国家无关,首次感染时间的估计范围在最后一次观察前3.4天(95%可信区间-CrI: 2.6, 4.6)和19.9天(95%可信区间:11.9,31.3)之间。我们开发了一个在线应用程序,通过估算首次感染日期的实际范围,为政策制定者提供实时支持,从而为接触者追踪提供信息并提高其效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing contact tracing for avian influenza in poultry flocks.

Contact tracing is commonly used to manage infectious diseases of both humans and animals. It aims to detect early and control potentially infected individuals or farms that had contact with infectious cases. Because it is very resource-intensive, contact tracing is usually performed on a pre-defined time window, based on previous knowledge of the duration of the incubation period. However, pre-defined time windows may not be always relevant, reducing the efficiency of contact tracing. In this study, we estimated the day when farms were first infected with highly pathogenic avian influenza viruses, a devastating pathogen causing severe socio-economic damage in domestic poultry. The estimation was performed by fitting a stochastic mechanistic model to observed daily mortality data from 63 infected poultry farms in France and The Netherlands, using approximate Bayesian computation. Independent of the poultry species or country, the estimates of the time of first infection ranged between 3.4 (95% credible interval-CrI: 2.6, 4.6) and 19.9 (95% CrI: 11.9, 31.3) days prior to the last observation. We developed an online application to provide real-time support to policymakers by estimating realistic ranges of dates of first infection to inform contact tracing and improve its efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信