Pooja Pant, Hui Duan, Nick Krom, Raul Huertas, Wolf-Rüdiger Scheible
{"title":"比较转录组学精确定位了对磷限制的保守和特异性转录反应。","authors":"Pooja Pant, Hui Duan, Nick Krom, Raul Huertas, Wolf-Rüdiger Scheible","doi":"10.1093/jxb/erae434","DOIUrl":null,"url":null,"abstract":"<p><p>Translating biological knowledge from Arabidopsis to crop species is important to advance agriculture and secure food production in the face of dwindling fertilizer resources and biotic and abiotic stresses. However, it is often not trivial to identify functional homologs (orthologs) of Arabidopsis genes in crops. Combining sequence and expression data can improve the correct prediction of orthologs. Here, we conducted a large-scale RNA sequencing based transcriptomics study of Arabidopsis, Medicago, Brachypodium, and Setaria grown side-by-side in phosphorus (P)-sufficient and P-limited conditions to generate comparable transcriptomics datasets. Comparison of top 200 P-limitation-induced genes in Arabidopsis revealed that ~80% of these genes have identifiable close homologs in the other three species but only ~50% retain their P-limitation response in the legume and grasses. Most of the hallmark genes of the P-starvation response were found conserved in all four species. This study reveals many known, novel, unannotated, conserved, and species-specific forms of regulation of the transcriptional P-starvation response. Identification and experimental verification of expressologs by independent RT-qPCR for P-limitation marker genes in Prunus showed the usefulness of comparative transcriptomics in pinpointing the functional orthologs in diverse crop species. This study provides an unprecedented resource for functional genomics and translational research to create P-efficient crops.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":"76 2","pages":"621-638"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative transcriptomics pinpoints conserved and specific transcriptional responses to phosphorus limitation.\",\"authors\":\"Pooja Pant, Hui Duan, Nick Krom, Raul Huertas, Wolf-Rüdiger Scheible\",\"doi\":\"10.1093/jxb/erae434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Translating biological knowledge from Arabidopsis to crop species is important to advance agriculture and secure food production in the face of dwindling fertilizer resources and biotic and abiotic stresses. However, it is often not trivial to identify functional homologs (orthologs) of Arabidopsis genes in crops. Combining sequence and expression data can improve the correct prediction of orthologs. Here, we conducted a large-scale RNA sequencing based transcriptomics study of Arabidopsis, Medicago, Brachypodium, and Setaria grown side-by-side in phosphorus (P)-sufficient and P-limited conditions to generate comparable transcriptomics datasets. Comparison of top 200 P-limitation-induced genes in Arabidopsis revealed that ~80% of these genes have identifiable close homologs in the other three species but only ~50% retain their P-limitation response in the legume and grasses. Most of the hallmark genes of the P-starvation response were found conserved in all four species. This study reveals many known, novel, unannotated, conserved, and species-specific forms of regulation of the transcriptional P-starvation response. Identification and experimental verification of expressologs by independent RT-qPCR for P-limitation marker genes in Prunus showed the usefulness of comparative transcriptomics in pinpointing the functional orthologs in diverse crop species. This study provides an unprecedented resource for functional genomics and translational research to create P-efficient crops.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\"76 2\",\"pages\":\"621-638\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/erae434\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae434","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Comparative transcriptomics pinpoints conserved and specific transcriptional responses to phosphorus limitation.
Translating biological knowledge from Arabidopsis to crop species is important to advance agriculture and secure food production in the face of dwindling fertilizer resources and biotic and abiotic stresses. However, it is often not trivial to identify functional homologs (orthologs) of Arabidopsis genes in crops. Combining sequence and expression data can improve the correct prediction of orthologs. Here, we conducted a large-scale RNA sequencing based transcriptomics study of Arabidopsis, Medicago, Brachypodium, and Setaria grown side-by-side in phosphorus (P)-sufficient and P-limited conditions to generate comparable transcriptomics datasets. Comparison of top 200 P-limitation-induced genes in Arabidopsis revealed that ~80% of these genes have identifiable close homologs in the other three species but only ~50% retain their P-limitation response in the legume and grasses. Most of the hallmark genes of the P-starvation response were found conserved in all four species. This study reveals many known, novel, unannotated, conserved, and species-specific forms of regulation of the transcriptional P-starvation response. Identification and experimental verification of expressologs by independent RT-qPCR for P-limitation marker genes in Prunus showed the usefulness of comparative transcriptomics in pinpointing the functional orthologs in diverse crop species. This study provides an unprecedented resource for functional genomics and translational research to create P-efficient crops.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.