减少灌溉频率增加澳大利亚温带牧场暴露于高二氧化碳的光合效益。

IF 5.6 2区 生物学 Q1 PLANT SCIENCES
Melika L Missen, Martin G De Kauwe, Mark J Hovenden
{"title":"减少灌溉频率增加澳大利亚温带牧场暴露于高二氧化碳的光合效益。","authors":"Melika L Missen, Martin G De Kauwe, Mark J Hovenden","doi":"10.1093/jxb/erae511","DOIUrl":null,"url":null,"abstract":"<p><p>Elevated atmospheric CO2 (e[CO2]) often enhances plant photosynthesis and improves water status. However, the effects of e[CO2] vary significantly and are believed to be influenced by water availability. With the future warmer climate expected to increase the frequency and severity of extreme rainfall, the response of plants to e[CO2] under changing precipitation patterns remains uncertain. We examined the effects of e[CO2] and different irrigation regimes on perennial ryegrass in a Free-Air CO2 Enrichment (FACE) experiment. Immediately after irrigation, the mean net photosynthetic rate was 21.2% higher under e[CO2] compared to ambient conditions. This benefit increased over time, reaching 31.3% higher as days since watering increased, indicating a substantial increase in photosynthetic benefit with longer intervals between watering. Mean stomatal conductance was 21% lower in ryegrass under e[CO2] immediately after irrigation compared to ambient plots. However, the reduction in stomatal conductance under e[CO2] decreased as the interval between irrigation events increased, showing no difference 7-10 days after an irrigation event. These results imply that plants benefit most from carbon fertilisation, assimilating relatively more carbon and losing less water, during periods with less frequent rainfall. These findings have significant implications for understanding leaf-level responses to climate change.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increasing photosynthetic benefit with decreasing irrigation frequency in an Australian temperate pasture exposed to elevated carbon dioxide.\",\"authors\":\"Melika L Missen, Martin G De Kauwe, Mark J Hovenden\",\"doi\":\"10.1093/jxb/erae511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Elevated atmospheric CO2 (e[CO2]) often enhances plant photosynthesis and improves water status. However, the effects of e[CO2] vary significantly and are believed to be influenced by water availability. With the future warmer climate expected to increase the frequency and severity of extreme rainfall, the response of plants to e[CO2] under changing precipitation patterns remains uncertain. We examined the effects of e[CO2] and different irrigation regimes on perennial ryegrass in a Free-Air CO2 Enrichment (FACE) experiment. Immediately after irrigation, the mean net photosynthetic rate was 21.2% higher under e[CO2] compared to ambient conditions. This benefit increased over time, reaching 31.3% higher as days since watering increased, indicating a substantial increase in photosynthetic benefit with longer intervals between watering. Mean stomatal conductance was 21% lower in ryegrass under e[CO2] immediately after irrigation compared to ambient plots. However, the reduction in stomatal conductance under e[CO2] decreased as the interval between irrigation events increased, showing no difference 7-10 days after an irrigation event. These results imply that plants benefit most from carbon fertilisation, assimilating relatively more carbon and losing less water, during periods with less frequent rainfall. These findings have significant implications for understanding leaf-level responses to climate change.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/erae511\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae511","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大气中升高的CO2 (e[CO2])常常增强植物的光合作用并改善水分状况。然而,e[CO2]的影响差异很大,而且据信受到水供应的影响。随着未来气候变暖预计将增加极端降雨的频率和严重程度,在降水模式变化的情况下,植物对e[CO2]的响应仍然不确定。在自由空气CO2富集(FACE)试验中,研究了e[CO2]和不同灌溉制度对多年生黑麦草的影响。灌水后立即,e[CO2]处理下的平均净光合速率比环境条件下高21.2%。这一效益随着时间的推移而增加,随着浇水天数的增加,达到31.3%,表明随着浇水间隔的延长,光合效益大幅增加。灌水后立即灌入e[CO2]的黑麦草的平均气孔导度比环境样地低21%。然而,在e[CO2]条件下,气孔导度的降低随灌水事件间隔的增加而减少,在灌水事件发生后7-10天没有差异。这些结果表明,在降雨较少的时期,植物从碳施肥中获益最多,吸收了相对较多的碳,失去了较少的水分。这些发现对于理解叶片对气候变化的响应具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Increasing photosynthetic benefit with decreasing irrigation frequency in an Australian temperate pasture exposed to elevated carbon dioxide.

Elevated atmospheric CO2 (e[CO2]) often enhances plant photosynthesis and improves water status. However, the effects of e[CO2] vary significantly and are believed to be influenced by water availability. With the future warmer climate expected to increase the frequency and severity of extreme rainfall, the response of plants to e[CO2] under changing precipitation patterns remains uncertain. We examined the effects of e[CO2] and different irrigation regimes on perennial ryegrass in a Free-Air CO2 Enrichment (FACE) experiment. Immediately after irrigation, the mean net photosynthetic rate was 21.2% higher under e[CO2] compared to ambient conditions. This benefit increased over time, reaching 31.3% higher as days since watering increased, indicating a substantial increase in photosynthetic benefit with longer intervals between watering. Mean stomatal conductance was 21% lower in ryegrass under e[CO2] immediately after irrigation compared to ambient plots. However, the reduction in stomatal conductance under e[CO2] decreased as the interval between irrigation events increased, showing no difference 7-10 days after an irrigation event. These results imply that plants benefit most from carbon fertilisation, assimilating relatively more carbon and losing less water, during periods with less frequent rainfall. These findings have significant implications for understanding leaf-level responses to climate change.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信