淋巴流出通道对脑脊液稳态的不同影响。

IF 12.6 1区 医学 Q1 IMMUNOLOGY
Journal of Experimental Medicine Pub Date : 2025-02-03 Epub Date: 2025-01-08 DOI:10.1084/jem.20241752
Zachary Papadopoulos, Leon C D Smyth, Igor Smirnov, Daniel A Gibson, Jasmin Herz, Jonathan Kipnis
{"title":"淋巴流出通道对脑脊液稳态的不同影响。","authors":"Zachary Papadopoulos, Leon C D Smyth, Igor Smirnov, Daniel A Gibson, Jasmin Herz, Jonathan Kipnis","doi":"10.1084/jem.20241752","DOIUrl":null,"url":null,"abstract":"<p><p>Dysfunctional lymphatic drainage from the central nervous system (CNS) has been linked to neuroinflammatory and neurodegenerative disorders, but our understanding of the lymphatic contribution to CNS fluid autoregulation remains limited. Here, we studied forces that drive the outflow of the cerebrospinal fluid (CSF) into the deep and superficial cervical lymph nodes (dcLN and scLN) and tested how the blockade of lymphatic networks affects CNS fluid homeostasis. Outflow to the dcLN occurred spontaneously in the absence of lymphatic pumping and was coupled to intracranial pressure (ICP), whereas scLN drainage was driven by pumping. Impaired dcLN drainage led to elevated CSF outflow resistance and delayed CSF-to-blood efflux despite the recruitment of the nasal-to-scLN pathway. Fluid regulation was better compensated after scLN obstruction. The dcLN pathway exhibited steady, consistent drainage across conditions, while the nasal-to-scLN pathway was dynamically activated to mitigate perturbances. These findings highlight the complex physiology of CSF homeostasis and lay the groundwork for future studies aimed at assessing and modulating CNS lymphatic function.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 2","pages":""},"PeriodicalIF":12.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708779/pdf/","citationCount":"0","resultStr":"{\"title\":\"Differential impact of lymphatic outflow pathways on cerebrospinal fluid homeostasis.\",\"authors\":\"Zachary Papadopoulos, Leon C D Smyth, Igor Smirnov, Daniel A Gibson, Jasmin Herz, Jonathan Kipnis\",\"doi\":\"10.1084/jem.20241752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dysfunctional lymphatic drainage from the central nervous system (CNS) has been linked to neuroinflammatory and neurodegenerative disorders, but our understanding of the lymphatic contribution to CNS fluid autoregulation remains limited. Here, we studied forces that drive the outflow of the cerebrospinal fluid (CSF) into the deep and superficial cervical lymph nodes (dcLN and scLN) and tested how the blockade of lymphatic networks affects CNS fluid homeostasis. Outflow to the dcLN occurred spontaneously in the absence of lymphatic pumping and was coupled to intracranial pressure (ICP), whereas scLN drainage was driven by pumping. Impaired dcLN drainage led to elevated CSF outflow resistance and delayed CSF-to-blood efflux despite the recruitment of the nasal-to-scLN pathway. Fluid regulation was better compensated after scLN obstruction. The dcLN pathway exhibited steady, consistent drainage across conditions, while the nasal-to-scLN pathway was dynamically activated to mitigate perturbances. These findings highlight the complex physiology of CSF homeostasis and lay the groundwork for future studies aimed at assessing and modulating CNS lymphatic function.</p>\",\"PeriodicalId\":15760,\"journal\":{\"name\":\"Journal of Experimental Medicine\",\"volume\":\"222 2\",\"pages\":\"\"},\"PeriodicalIF\":12.6000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708779/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1084/jem.20241752\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20241752","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

中枢神经系统(CNS)的淋巴引流功能障碍与神经炎症和神经退行性疾病有关,但我们对淋巴对中枢神经系统液体自我调节的贡献的理解仍然有限。在这里,我们研究了驱动脑脊液(CSF)流出进入颈部深部和浅表淋巴结(dcLN和scLN)的力量,并测试了淋巴网络的阻断如何影响中枢神经系统液体稳态。在没有淋巴泵送的情况下,向dcLN的流出是自发发生的,并与颅内压(ICP)相耦合,而scLN的引流是由泵送驱动的。dcLN引流受损导致脑脊液流出阻力升高,脑脊液到血液的流出延迟,尽管鼻腔到scln通路有所恢复。在scLN阻塞后,液体调节得到更好的补偿。dcLN通路在不同条件下表现出稳定、一致的引流,而鼻腔到scln通路被动态激活以减轻扰动。这些发现强调了脑脊液稳态的复杂生理学,并为未来旨在评估和调节中枢神经系统淋巴功能的研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential impact of lymphatic outflow pathways on cerebrospinal fluid homeostasis.

Dysfunctional lymphatic drainage from the central nervous system (CNS) has been linked to neuroinflammatory and neurodegenerative disorders, but our understanding of the lymphatic contribution to CNS fluid autoregulation remains limited. Here, we studied forces that drive the outflow of the cerebrospinal fluid (CSF) into the deep and superficial cervical lymph nodes (dcLN and scLN) and tested how the blockade of lymphatic networks affects CNS fluid homeostasis. Outflow to the dcLN occurred spontaneously in the absence of lymphatic pumping and was coupled to intracranial pressure (ICP), whereas scLN drainage was driven by pumping. Impaired dcLN drainage led to elevated CSF outflow resistance and delayed CSF-to-blood efflux despite the recruitment of the nasal-to-scLN pathway. Fluid regulation was better compensated after scLN obstruction. The dcLN pathway exhibited steady, consistent drainage across conditions, while the nasal-to-scLN pathway was dynamically activated to mitigate perturbances. These findings highlight the complex physiology of CSF homeostasis and lay the groundwork for future studies aimed at assessing and modulating CNS lymphatic function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
1.30%
发文量
189
审稿时长
3-8 weeks
期刊介绍: Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field. Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions. Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信