{"title":"腔中分子与原子间光子介导的能量传递:数值研究。","authors":"Jun Zhang, Shaohong Wang, Mengdi Guo, Xin-Ke Li, Yong-Chen Xiong, Wanghuai Zhou","doi":"10.1063/5.0242420","DOIUrl":null,"url":null,"abstract":"<p><p>The molecular energy transfer is crucial for many different physicochemical processes. The efficiency of traditional resonance energy transfer relies on dipole-dipole distance between molecules and becomes negligible when the distance is larger than ∼10 nm, which is difficult to overcome. Cavity polariton, formed when placing molecules inside the cavity, is a promising way to surmount the distance limit. By hybridizing a two-level atom (TLA) and a lithium fluoride (LiF) molecule with a cavity, we numerically simulate the reaction process and the energy transfer between them. Our results show that the TLA can induce a deep potential well, which can be seen as a replica of the potential energy surface of bare LiF, acting as a reservoir to absorb/release the molecular kinetic energy. In addition, the energy transfer shows a molecular nuclear kinetic energy dependent behavior, namely, more nuclear kinetic energy igniting more energy transfer. These findings show us a promising way to manipulate the energy transfer process within the cavity using an intentional TLA, which can also serve as a knob to control the reaction process.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 24","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photon-mediated energy transfer between molecules and atoms in a cavity: A numerical study.\",\"authors\":\"Jun Zhang, Shaohong Wang, Mengdi Guo, Xin-Ke Li, Yong-Chen Xiong, Wanghuai Zhou\",\"doi\":\"10.1063/5.0242420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The molecular energy transfer is crucial for many different physicochemical processes. The efficiency of traditional resonance energy transfer relies on dipole-dipole distance between molecules and becomes negligible when the distance is larger than ∼10 nm, which is difficult to overcome. Cavity polariton, formed when placing molecules inside the cavity, is a promising way to surmount the distance limit. By hybridizing a two-level atom (TLA) and a lithium fluoride (LiF) molecule with a cavity, we numerically simulate the reaction process and the energy transfer between them. Our results show that the TLA can induce a deep potential well, which can be seen as a replica of the potential energy surface of bare LiF, acting as a reservoir to absorb/release the molecular kinetic energy. In addition, the energy transfer shows a molecular nuclear kinetic energy dependent behavior, namely, more nuclear kinetic energy igniting more energy transfer. These findings show us a promising way to manipulate the energy transfer process within the cavity using an intentional TLA, which can also serve as a knob to control the reaction process.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"161 24\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0242420\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0242420","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Photon-mediated energy transfer between molecules and atoms in a cavity: A numerical study.
The molecular energy transfer is crucial for many different physicochemical processes. The efficiency of traditional resonance energy transfer relies on dipole-dipole distance between molecules and becomes negligible when the distance is larger than ∼10 nm, which is difficult to overcome. Cavity polariton, formed when placing molecules inside the cavity, is a promising way to surmount the distance limit. By hybridizing a two-level atom (TLA) and a lithium fluoride (LiF) molecule with a cavity, we numerically simulate the reaction process and the energy transfer between them. Our results show that the TLA can induce a deep potential well, which can be seen as a replica of the potential energy surface of bare LiF, acting as a reservoir to absorb/release the molecular kinetic energy. In addition, the energy transfer shows a molecular nuclear kinetic energy dependent behavior, namely, more nuclear kinetic energy igniting more energy transfer. These findings show us a promising way to manipulate the energy transfer process within the cavity using an intentional TLA, which can also serve as a knob to control the reaction process.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.