一种新的人类特异性lncRNA MEK6- as1通过稳定MEK6 mRNA调节脂肪生成和脂肪酸生物合成。

IF 9 2区 医学 Q1 CELL BIOLOGY
Di Li, Yunhua Chen, Xingyu Zhu, Yanlei Yang, Hongling Li, Robert Chunhua Zhao
{"title":"一种新的人类特异性lncRNA MEK6- as1通过稳定MEK6 mRNA调节脂肪生成和脂肪酸生物合成。","authors":"Di Li, Yunhua Chen, Xingyu Zhu, Yanlei Yang, Hongling Li, Robert Chunhua Zhao","doi":"10.1186/s12929-024-01098-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Obesity is becoming one of the major non-communicable diseases with increasing incidence and risks that cannot be ignored. However effective and safe clinical treatment strategies still need to be deeply explored. Increased number and volume of adipocytes lead to overweight and obesity. The aim of our work is to identify lncRNAs that have important regulatory in differentiation of human mesenchymal stem cells (MSCs) into adipocytes, and to provide effective targets for clinical prevention and treatment of obesity and related metabolic disorders.</p><p><strong>Methods: </strong>We extracted primary MSCs from human adipose tissue, and conducted expression profile analysis of lncRNAs during adipogenic differentiation of MSCs to screen changed lncRNAs. Characteristics of lncRNA were revealed mainly by RACE and RNA FISH. Loss- and gain-of function experiments in vivo and in vitro were used to analyze effects of lncRNA. Targeted metabolomics was utilized to detect levels of free fatty acids. RNA pull-down, mRNA stability tests, etc. were employed to explore mechanisms of lncRNA.</p><p><strong>Results: </strong>Human-specific lncRNA, we named it MEK6-AS1, was the most up-regulated transcript during adipogenic differentiation of MSCs. MEK6-AS1 was highly expressed in adipose tissue samples from individuals with BMI ≥ 25 and positively correlated with adipogenic marker genes in these samples. Knocking down lncRNA inhibited expression of adipogenic differentiation markers and ectopic adipogenesis, reducing contents of various free fatty acids, as well as promoting osteogenic differentiation. Overexpression of lncRNA had the opposite effects to the above processes. We also found that MEK6-AS1 was elevated during hepatic steatosis organoid generation. Mechanistically, MEK6-AS1 worked partially through stabilization of MEK6 mRNA by NAT10.</p><p><strong>Conclusions: </strong>We have identified a human-specific lncRNA (MEK6-AS1) with position information in the genomic database but has not been extensively reported. We demonstrated that MEK6-AS1 as a novel lncRNA involved in adipogenic differentiation and adipogenesis, fatty acid metabolism, and osteogenic differentiation. We found that MEK6-AS1 may exert its effect by enhancing MEK6 mRNA stability through NAT10. Our study may provide insights into implication of lncRNAs in stem cell biology and offer a new potential therapeutic target for the prevention and treatment of obesity and other related disease.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"6"},"PeriodicalIF":9.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708274/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel human specific lncRNA MEK6-AS1 regulates adipogenesis and fatty acid biosynthesis by stabilizing MEK6 mRNA.\",\"authors\":\"Di Li, Yunhua Chen, Xingyu Zhu, Yanlei Yang, Hongling Li, Robert Chunhua Zhao\",\"doi\":\"10.1186/s12929-024-01098-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Obesity is becoming one of the major non-communicable diseases with increasing incidence and risks that cannot be ignored. However effective and safe clinical treatment strategies still need to be deeply explored. Increased number and volume of adipocytes lead to overweight and obesity. The aim of our work is to identify lncRNAs that have important regulatory in differentiation of human mesenchymal stem cells (MSCs) into adipocytes, and to provide effective targets for clinical prevention and treatment of obesity and related metabolic disorders.</p><p><strong>Methods: </strong>We extracted primary MSCs from human adipose tissue, and conducted expression profile analysis of lncRNAs during adipogenic differentiation of MSCs to screen changed lncRNAs. Characteristics of lncRNA were revealed mainly by RACE and RNA FISH. Loss- and gain-of function experiments in vivo and in vitro were used to analyze effects of lncRNA. Targeted metabolomics was utilized to detect levels of free fatty acids. RNA pull-down, mRNA stability tests, etc. were employed to explore mechanisms of lncRNA.</p><p><strong>Results: </strong>Human-specific lncRNA, we named it MEK6-AS1, was the most up-regulated transcript during adipogenic differentiation of MSCs. MEK6-AS1 was highly expressed in adipose tissue samples from individuals with BMI ≥ 25 and positively correlated with adipogenic marker genes in these samples. Knocking down lncRNA inhibited expression of adipogenic differentiation markers and ectopic adipogenesis, reducing contents of various free fatty acids, as well as promoting osteogenic differentiation. Overexpression of lncRNA had the opposite effects to the above processes. We also found that MEK6-AS1 was elevated during hepatic steatosis organoid generation. Mechanistically, MEK6-AS1 worked partially through stabilization of MEK6 mRNA by NAT10.</p><p><strong>Conclusions: </strong>We have identified a human-specific lncRNA (MEK6-AS1) with position information in the genomic database but has not been extensively reported. We demonstrated that MEK6-AS1 as a novel lncRNA involved in adipogenic differentiation and adipogenesis, fatty acid metabolism, and osteogenic differentiation. We found that MEK6-AS1 may exert its effect by enhancing MEK6 mRNA stability through NAT10. Our study may provide insights into implication of lncRNAs in stem cell biology and offer a new potential therapeutic target for the prevention and treatment of obesity and other related disease.</p>\",\"PeriodicalId\":15365,\"journal\":{\"name\":\"Journal of Biomedical Science\",\"volume\":\"32 1\",\"pages\":\"6\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708274/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12929-024-01098-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12929-024-01098-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:肥胖正在成为主要的非传染性疾病之一,其发病率和风险日益增加,不容忽视。但有效、安全的临床治疗策略仍需深入探索。脂肪细胞数量和体积的增加导致超重和肥胖。我们的工作目的是寻找在人间充质干细胞(MSCs)向脂肪细胞分化过程中具有重要调控作用的lncrna,为临床预防和治疗肥胖及相关代谢紊乱提供有效靶点。方法:从人脂肪组织中提取原代MSCs,对MSCs成脂分化过程中lncRNAs的表达谱进行分析,筛选lncRNAs的变化。lncRNA的特征主要通过RACE和RNA FISH来揭示。通过体内和体外的功能丧失和功能获得实验来分析lncRNA的作用。利用靶向代谢组学检测游离脂肪酸水平。通过RNA pull-down、mRNA稳定性等实验探讨lncRNA的作用机制。结果:我们命名为MEK6-AS1的人类特异性lncRNA是MSCs成脂分化过程中上调最多的转录物。MEK6-AS1在BMI≥25的个体的脂肪组织样本中高表达,并与这些样本中的脂肪生成标记基因呈正相关。敲低lncRNA可抑制成脂分化标志物的表达和异位脂肪形成,降低各种游离脂肪酸含量,促进成骨分化。lncRNA过表达与上述过程相反。我们还发现MEK6-AS1在肝脂肪变性类器官生成过程中升高。在机制上,MEK6- as1部分通过NAT10稳定MEK6 mRNA发挥作用。结论:我们已经在基因组数据库中发现了一个具有位置信息的人类特异性lncRNA (MEK6-AS1),但尚未被广泛报道。我们证明了MEK6-AS1作为一种新的lncRNA参与成脂分化和脂肪形成、脂肪酸代谢和成骨分化。我们发现MEK6- as1可能通过NAT10增强MEK6 mRNA的稳定性来发挥作用。我们的研究可能会揭示lncrna在干细胞生物学中的意义,并为预防和治疗肥胖等相关疾病提供新的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel human specific lncRNA MEK6-AS1 regulates adipogenesis and fatty acid biosynthesis by stabilizing MEK6 mRNA.

Background: Obesity is becoming one of the major non-communicable diseases with increasing incidence and risks that cannot be ignored. However effective and safe clinical treatment strategies still need to be deeply explored. Increased number and volume of adipocytes lead to overweight and obesity. The aim of our work is to identify lncRNAs that have important regulatory in differentiation of human mesenchymal stem cells (MSCs) into adipocytes, and to provide effective targets for clinical prevention and treatment of obesity and related metabolic disorders.

Methods: We extracted primary MSCs from human adipose tissue, and conducted expression profile analysis of lncRNAs during adipogenic differentiation of MSCs to screen changed lncRNAs. Characteristics of lncRNA were revealed mainly by RACE and RNA FISH. Loss- and gain-of function experiments in vivo and in vitro were used to analyze effects of lncRNA. Targeted metabolomics was utilized to detect levels of free fatty acids. RNA pull-down, mRNA stability tests, etc. were employed to explore mechanisms of lncRNA.

Results: Human-specific lncRNA, we named it MEK6-AS1, was the most up-regulated transcript during adipogenic differentiation of MSCs. MEK6-AS1 was highly expressed in adipose tissue samples from individuals with BMI ≥ 25 and positively correlated with adipogenic marker genes in these samples. Knocking down lncRNA inhibited expression of adipogenic differentiation markers and ectopic adipogenesis, reducing contents of various free fatty acids, as well as promoting osteogenic differentiation. Overexpression of lncRNA had the opposite effects to the above processes. We also found that MEK6-AS1 was elevated during hepatic steatosis organoid generation. Mechanistically, MEK6-AS1 worked partially through stabilization of MEK6 mRNA by NAT10.

Conclusions: We have identified a human-specific lncRNA (MEK6-AS1) with position information in the genomic database but has not been extensively reported. We demonstrated that MEK6-AS1 as a novel lncRNA involved in adipogenic differentiation and adipogenesis, fatty acid metabolism, and osteogenic differentiation. We found that MEK6-AS1 may exert its effect by enhancing MEK6 mRNA stability through NAT10. Our study may provide insights into implication of lncRNAs in stem cell biology and offer a new potential therapeutic target for the prevention and treatment of obesity and other related disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomedical Science
Journal of Biomedical Science 医学-医学:研究与实验
CiteScore
18.50
自引率
0.90%
发文量
95
审稿时长
1 months
期刊介绍: The Journal of Biomedical Science is an open access, peer-reviewed journal that focuses on fundamental and molecular aspects of basic medical sciences. It emphasizes molecular studies of biomedical problems and mechanisms. The National Science and Technology Council (NSTC), Taiwan supports the journal and covers the publication costs for accepted articles. The journal aims to provide an international platform for interdisciplinary discussions and contribute to the advancement of medicine. It benefits both readers and authors by accelerating the dissemination of research information and providing maximum access to scholarly communication. All articles published in the Journal of Biomedical Science are included in various databases such as Biological Abstracts, BIOSIS, CABI, CAS, Citebase, Current contents, DOAJ, Embase, EmBiology, and Global Health, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信