{"title":"分解摩擦系数,分析水化对C60(OH)n的影响。","authors":"Tomoya Iwashita, Yuki Uematsu, Masahide Terazima, Ryo Akiyama","doi":"10.1063/5.0241914","DOIUrl":null,"url":null,"abstract":"<p><p>To analyze hydration effects on macromolecular diffusion, the friction coefficients of macromolecules were examined using molecular dynamics simulations with an all-atom model. In the present study, a method was introduced to decompose the molecular friction coefficient into the contributions for each site on the macromolecule. The method was applied to several fullerenols in ambient water. The friction coefficients for the hydrophilic part, such as the OH group, were larger than those for the hydrophobic part, such as the C. The hydration effect did not depend only on the kind of functional group but also on the surface roughness. This approach would be useful in explaining the experimentally observed large changes in diffusion coefficients of proteins that were accompanied by conformation changes.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 24","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decomposition of friction coefficients to analyze hydration effects on a C60(OH)n.\",\"authors\":\"Tomoya Iwashita, Yuki Uematsu, Masahide Terazima, Ryo Akiyama\",\"doi\":\"10.1063/5.0241914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To analyze hydration effects on macromolecular diffusion, the friction coefficients of macromolecules were examined using molecular dynamics simulations with an all-atom model. In the present study, a method was introduced to decompose the molecular friction coefficient into the contributions for each site on the macromolecule. The method was applied to several fullerenols in ambient water. The friction coefficients for the hydrophilic part, such as the OH group, were larger than those for the hydrophobic part, such as the C. The hydration effect did not depend only on the kind of functional group but also on the surface roughness. This approach would be useful in explaining the experimentally observed large changes in diffusion coefficients of proteins that were accompanied by conformation changes.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"161 24\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0241914\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0241914","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Decomposition of friction coefficients to analyze hydration effects on a C60(OH)n.
To analyze hydration effects on macromolecular diffusion, the friction coefficients of macromolecules were examined using molecular dynamics simulations with an all-atom model. In the present study, a method was introduced to decompose the molecular friction coefficient into the contributions for each site on the macromolecule. The method was applied to several fullerenols in ambient water. The friction coefficients for the hydrophilic part, such as the OH group, were larger than those for the hydrophobic part, such as the C. The hydration effect did not depend only on the kind of functional group but also on the surface roughness. This approach would be useful in explaining the experimentally observed large changes in diffusion coefficients of proteins that were accompanied by conformation changes.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.