Tianyu Zhang, Ziqi Gong, Bing Zhou, Lei Rao, Xiaojun Liao
{"title":"枯草芽孢杆菌孢子萌发调控蛋白研究进展。","authors":"Tianyu Zhang, Ziqi Gong, Bing Zhou, Lei Rao, Xiaojun Liao","doi":"10.1128/jb.00285-24","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial spores can remain dormant for years, but they maintain the ability to recommence life through a process termed germination. Although spore germination has been reviewed many times, recent work has provided novel conceptual and molecular understandings of this important process. By using <i>Bacillus subtilis</i> as a model organism, here we thoroughly describe the signal transduction pathway and events that lead to spore germination, incorporating the latest findings on transcription and translation that are likely detected during germination. Then, we comprehensively review the proteins associated with germination and their respective functions. Notably, the typical germinant receptor GerA and the SpoVAF/FigP complex have been newly established as channels for ions release at early stage of germination. Moreover, given that germination is also affected by spore quality, such as molecular cargo, we collect the data about the proteins regulating sporulation to affect spore quality. Specifically, RocG-mediated glutamate catabolism during sporulation to ensure spore quality; GerE-regulated coat protein expression, and CotH-modified coat protein by phosphorylation to ensure normal coat assembly; and RNase Y-degraded RNA in newly released spores to promote dormancy. The latest progress in our understanding of these germination proteins provides valuable insights into the mechanism underlying germination.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0028524"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841064/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recent progress in proteins regulating the germination of <i>Bacillus subtilis</i> spores.\",\"authors\":\"Tianyu Zhang, Ziqi Gong, Bing Zhou, Lei Rao, Xiaojun Liao\",\"doi\":\"10.1128/jb.00285-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacterial spores can remain dormant for years, but they maintain the ability to recommence life through a process termed germination. Although spore germination has been reviewed many times, recent work has provided novel conceptual and molecular understandings of this important process. By using <i>Bacillus subtilis</i> as a model organism, here we thoroughly describe the signal transduction pathway and events that lead to spore germination, incorporating the latest findings on transcription and translation that are likely detected during germination. Then, we comprehensively review the proteins associated with germination and their respective functions. Notably, the typical germinant receptor GerA and the SpoVAF/FigP complex have been newly established as channels for ions release at early stage of germination. Moreover, given that germination is also affected by spore quality, such as molecular cargo, we collect the data about the proteins regulating sporulation to affect spore quality. Specifically, RocG-mediated glutamate catabolism during sporulation to ensure spore quality; GerE-regulated coat protein expression, and CotH-modified coat protein by phosphorylation to ensure normal coat assembly; and RNase Y-degraded RNA in newly released spores to promote dormancy. The latest progress in our understanding of these germination proteins provides valuable insights into the mechanism underlying germination.</p>\",\"PeriodicalId\":15107,\"journal\":{\"name\":\"Journal of Bacteriology\",\"volume\":\" \",\"pages\":\"e0028524\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841064/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bacteriology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/jb.00285-24\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00285-24","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Recent progress in proteins regulating the germination of Bacillus subtilis spores.
Bacterial spores can remain dormant for years, but they maintain the ability to recommence life through a process termed germination. Although spore germination has been reviewed many times, recent work has provided novel conceptual and molecular understandings of this important process. By using Bacillus subtilis as a model organism, here we thoroughly describe the signal transduction pathway and events that lead to spore germination, incorporating the latest findings on transcription and translation that are likely detected during germination. Then, we comprehensively review the proteins associated with germination and their respective functions. Notably, the typical germinant receptor GerA and the SpoVAF/FigP complex have been newly established as channels for ions release at early stage of germination. Moreover, given that germination is also affected by spore quality, such as molecular cargo, we collect the data about the proteins regulating sporulation to affect spore quality. Specifically, RocG-mediated glutamate catabolism during sporulation to ensure spore quality; GerE-regulated coat protein expression, and CotH-modified coat protein by phosphorylation to ensure normal coat assembly; and RNase Y-degraded RNA in newly released spores to promote dormancy. The latest progress in our understanding of these germination proteins provides valuable insights into the mechanism underlying germination.
期刊介绍:
The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.