上皮细胞通过间质环生长驱动肺泡形成。

IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Nicholas M Negretti, Yeongseo Son, Philip Crooke, Erin J Plosa, John T Benjamin, Christopher S Jetter, Claire Bunn, Nicholas Mignemi, John Marini, Alice N Hackett, Meaghan Ransom, Shriya Garg, David Nichols, Susan H Guttentag, Heather H Pua, Timothy S Blackwell, William Zacharias, David B Frank, John A Kozub, Anita Mahadevan-Jansen, Evan Krystofiak, Jonathan A Kropski, Christopher Ve Wright, Bryan Millis, Jennifer Ms Sucre
{"title":"上皮细胞通过间质环生长驱动肺泡形成。","authors":"Nicholas M Negretti, Yeongseo Son, Philip Crooke, Erin J Plosa, John T Benjamin, Christopher S Jetter, Claire Bunn, Nicholas Mignemi, John Marini, Alice N Hackett, Meaghan Ransom, Shriya Garg, David Nichols, Susan H Guttentag, Heather H Pua, Timothy S Blackwell, William Zacharias, David B Frank, John A Kozub, Anita Mahadevan-Jansen, Evan Krystofiak, Jonathan A Kropski, Christopher Ve Wright, Bryan Millis, Jennifer Ms Sucre","doi":"10.1172/jci.insight.187876","DOIUrl":null,"url":null,"abstract":"<p><p>Determining how alveoli are formed and maintained is critical to understanding lung organogenesis and regeneration after injury. To study the cellular dynamics of this critical stage of lung development, we have used scanned oblique-plane illumination microscopy of living lung slices to observe alveologenesis in real time at high resolution over several days. Contrary to the prevailing notion that alveologenesis occurs by airspace subdivision via ingrowing septa, we find that alveoli form by ballooning epithelial outgrowth supported by contracting mesenchymal ring structures. Systematic analysis has produced a computational model of finely timed cellular structural changes that drive normal alveologenesis. With this model, we can now quantify how perturbing known regulatory intercellular signaling pathways and cell migration processes effects alveologenesis. In the future, this new paradigm and platform can be leveraged for mechanistic studies and screening for therapies to promote lung regeneration.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epithelial outgrowth through mesenchymal rings drives alveologenesis.\",\"authors\":\"Nicholas M Negretti, Yeongseo Son, Philip Crooke, Erin J Plosa, John T Benjamin, Christopher S Jetter, Claire Bunn, Nicholas Mignemi, John Marini, Alice N Hackett, Meaghan Ransom, Shriya Garg, David Nichols, Susan H Guttentag, Heather H Pua, Timothy S Blackwell, William Zacharias, David B Frank, John A Kozub, Anita Mahadevan-Jansen, Evan Krystofiak, Jonathan A Kropski, Christopher Ve Wright, Bryan Millis, Jennifer Ms Sucre\",\"doi\":\"10.1172/jci.insight.187876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Determining how alveoli are formed and maintained is critical to understanding lung organogenesis and regeneration after injury. To study the cellular dynamics of this critical stage of lung development, we have used scanned oblique-plane illumination microscopy of living lung slices to observe alveologenesis in real time at high resolution over several days. Contrary to the prevailing notion that alveologenesis occurs by airspace subdivision via ingrowing septa, we find that alveoli form by ballooning epithelial outgrowth supported by contracting mesenchymal ring structures. Systematic analysis has produced a computational model of finely timed cellular structural changes that drive normal alveologenesis. With this model, we can now quantify how perturbing known regulatory intercellular signaling pathways and cell migration processes effects alveologenesis. In the future, this new paradigm and platform can be leveraged for mechanistic studies and screening for therapies to promote lung regeneration.</p>\",\"PeriodicalId\":14722,\"journal\":{\"name\":\"JCI insight\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCI insight\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/jci.insight.187876\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.187876","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

确定肺泡是如何形成和维持的,对于理解损伤后肺器官发生和再生至关重要。为了研究肺发育这一关键阶段的细胞动力学,我们使用活肺切片的扫描斜平面照明显微镜在数天内以高分辨率实时观察肺泡形成。与普遍认为肺泡形成是通过向内生长的隔膜进行空域细分的观点相反,我们发现肺泡的形成是由收缩的间质环结构支持的球囊上皮外生物形成的。系统的分析已经产生了一个精细的定时细胞结构变化的计算模型,驱动正常的肺泡形成。有了这个模型,我们现在可以量化干扰已知的调节细胞间信号通路和细胞迁移过程如何影响肺泡形成。在未来,这种新的模式和平台可以用于机制研究和筛选促进肺再生的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epithelial outgrowth through mesenchymal rings drives alveologenesis.

Determining how alveoli are formed and maintained is critical to understanding lung organogenesis and regeneration after injury. To study the cellular dynamics of this critical stage of lung development, we have used scanned oblique-plane illumination microscopy of living lung slices to observe alveologenesis in real time at high resolution over several days. Contrary to the prevailing notion that alveologenesis occurs by airspace subdivision via ingrowing septa, we find that alveoli form by ballooning epithelial outgrowth supported by contracting mesenchymal ring structures. Systematic analysis has produced a computational model of finely timed cellular structural changes that drive normal alveologenesis. With this model, we can now quantify how perturbing known regulatory intercellular signaling pathways and cell migration processes effects alveologenesis. In the future, this new paradigm and platform can be leveraged for mechanistic studies and screening for therapies to promote lung regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JCI insight
JCI insight Medicine-General Medicine
CiteScore
13.70
自引率
1.20%
发文量
543
审稿时长
6 weeks
期刊介绍: JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信