T Oppelstrup, L G Stanton, J O B Tempkin, T N Ozturk, H I Ingólfsson, T S Carpenter
{"title":"蛋白质-膜系统连续模型的各向异性相互作用。","authors":"T Oppelstrup, L G Stanton, J O B Tempkin, T N Ozturk, H I Ingólfsson, T S Carpenter","doi":"10.1063/5.0237408","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, a model for anisotropic interactions between proteins and cellular membranes is proposed for large-scale continuum simulations. The framework of the model is based on dynamic density functional theory, which provides a formalism to describe the lipid densities within the membrane as continuum fields while still maintaining the fidelity of the underlying molecular interactions. Within this framework, we extend recent results to include the anisotropic effects of protein-lipid interactions. As applications, we consider two membrane proteins of biological interest: a RAS-RAF complex tethered to the membrane and a membrane embedded G protein-coupled receptor. A strong qualitative and quantitative agreement is found between the numerical results and the corresponding molecular dynamics simulations. Combining the scope of continuum level simulations with the details from molecular level particle simulations enables research into protein-membrane behaviors at a more biologically relevant scale, which crucially can also be accessed via experiment.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 24","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic interactions for continuum modeling of protein-membrane systems.\",\"authors\":\"T Oppelstrup, L G Stanton, J O B Tempkin, T N Ozturk, H I Ingólfsson, T S Carpenter\",\"doi\":\"10.1063/5.0237408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, a model for anisotropic interactions between proteins and cellular membranes is proposed for large-scale continuum simulations. The framework of the model is based on dynamic density functional theory, which provides a formalism to describe the lipid densities within the membrane as continuum fields while still maintaining the fidelity of the underlying molecular interactions. Within this framework, we extend recent results to include the anisotropic effects of protein-lipid interactions. As applications, we consider two membrane proteins of biological interest: a RAS-RAF complex tethered to the membrane and a membrane embedded G protein-coupled receptor. A strong qualitative and quantitative agreement is found between the numerical results and the corresponding molecular dynamics simulations. Combining the scope of continuum level simulations with the details from molecular level particle simulations enables research into protein-membrane behaviors at a more biologically relevant scale, which crucially can also be accessed via experiment.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"161 24\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0237408\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0237408","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Anisotropic interactions for continuum modeling of protein-membrane systems.
In this work, a model for anisotropic interactions between proteins and cellular membranes is proposed for large-scale continuum simulations. The framework of the model is based on dynamic density functional theory, which provides a formalism to describe the lipid densities within the membrane as continuum fields while still maintaining the fidelity of the underlying molecular interactions. Within this framework, we extend recent results to include the anisotropic effects of protein-lipid interactions. As applications, we consider two membrane proteins of biological interest: a RAS-RAF complex tethered to the membrane and a membrane embedded G protein-coupled receptor. A strong qualitative and quantitative agreement is found between the numerical results and the corresponding molecular dynamics simulations. Combining the scope of continuum level simulations with the details from molecular level particle simulations enables research into protein-membrane behaviors at a more biologically relevant scale, which crucially can also be accessed via experiment.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.