Zaki Alasmar, M. Mallar Chakravarty, Virginia B. Penhune, Christopher J. Steele
{"title":"小脑-皮质结构协方差模式反映了感觉运动和认知网络的解剖连通性。","authors":"Zaki Alasmar, M. Mallar Chakravarty, Virginia B. Penhune, Christopher J. Steele","doi":"10.1002/hbm.70079","DOIUrl":null,"url":null,"abstract":"<p>The cortex and cerebellum are densely connected through reciprocal input/output projections that form segregated circuits. These circuits are shown to differentially connect anterior lobules of the cerebellum to sensorimotor regions, and lobules Crus I and II to prefrontal regions. This differential connectivity pattern leads to the hypothesis that individual differences in structure should be related, especially for connected regions. To test this hypothesis, we examined covariation between the volumes of anterior sensorimotor and lateral cognitive lobules of the cerebellum and measures of cortical thickness (CT) and surface area (SA) across the whole brain in a sample of 270 young adults drawn from the HCP dataset. We observed that patterns of cerebellar–cortical covariance differed between sensorimotor and cognitive networks. Anterior motor lobules of the cerebellum showed greater covariance with sensorimotor regions of the cortex, while lobules Crus I and Crus II showed greater covariance with frontal and temporal regions. Interestingly, cerebellar volume showed predominantly negative relationships with CT and predominantly positive relationships with SA. Individual differences in SA are thought to be largely under genetic control while CT is thought to be more malleable by experience. This suggests that cerebellar–cortical covariation for SA may be a more stable feature, whereas covariation for CT may be more affected by development. Additionally, similarity metrics revealed that the pattern of covariance showed a gradual transition between sensorimotor and cognitive lobules, consistent with evidence of functional gradients within the cerebellum. Taken together, these findings are consistent with known patterns of structural and functional connectivity between the cerebellum and cortex. They also shed new light on possibly differing relationships between cerebellar volume and cortical thickness and surface area. Finally, our findings are consistent with the interactive specialization framework which proposes that structurally and functionally connected brain regions develop in concert.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718418/pdf/","citationCount":"0","resultStr":"{\"title\":\"Patterns of Cerebellar–Cortical Structural Covariance Mirror Anatomical Connectivity of Sensorimotor and Cognitive Networks\",\"authors\":\"Zaki Alasmar, M. Mallar Chakravarty, Virginia B. Penhune, Christopher J. Steele\",\"doi\":\"10.1002/hbm.70079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The cortex and cerebellum are densely connected through reciprocal input/output projections that form segregated circuits. These circuits are shown to differentially connect anterior lobules of the cerebellum to sensorimotor regions, and lobules Crus I and II to prefrontal regions. This differential connectivity pattern leads to the hypothesis that individual differences in structure should be related, especially for connected regions. To test this hypothesis, we examined covariation between the volumes of anterior sensorimotor and lateral cognitive lobules of the cerebellum and measures of cortical thickness (CT) and surface area (SA) across the whole brain in a sample of 270 young adults drawn from the HCP dataset. We observed that patterns of cerebellar–cortical covariance differed between sensorimotor and cognitive networks. Anterior motor lobules of the cerebellum showed greater covariance with sensorimotor regions of the cortex, while lobules Crus I and Crus II showed greater covariance with frontal and temporal regions. Interestingly, cerebellar volume showed predominantly negative relationships with CT and predominantly positive relationships with SA. Individual differences in SA are thought to be largely under genetic control while CT is thought to be more malleable by experience. This suggests that cerebellar–cortical covariation for SA may be a more stable feature, whereas covariation for CT may be more affected by development. Additionally, similarity metrics revealed that the pattern of covariance showed a gradual transition between sensorimotor and cognitive lobules, consistent with evidence of functional gradients within the cerebellum. Taken together, these findings are consistent with known patterns of structural and functional connectivity between the cerebellum and cortex. They also shed new light on possibly differing relationships between cerebellar volume and cortical thickness and surface area. Finally, our findings are consistent with the interactive specialization framework which proposes that structurally and functionally connected brain regions develop in concert.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718418/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70079\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70079","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Patterns of Cerebellar–Cortical Structural Covariance Mirror Anatomical Connectivity of Sensorimotor and Cognitive Networks
The cortex and cerebellum are densely connected through reciprocal input/output projections that form segregated circuits. These circuits are shown to differentially connect anterior lobules of the cerebellum to sensorimotor regions, and lobules Crus I and II to prefrontal regions. This differential connectivity pattern leads to the hypothesis that individual differences in structure should be related, especially for connected regions. To test this hypothesis, we examined covariation between the volumes of anterior sensorimotor and lateral cognitive lobules of the cerebellum and measures of cortical thickness (CT) and surface area (SA) across the whole brain in a sample of 270 young adults drawn from the HCP dataset. We observed that patterns of cerebellar–cortical covariance differed between sensorimotor and cognitive networks. Anterior motor lobules of the cerebellum showed greater covariance with sensorimotor regions of the cortex, while lobules Crus I and Crus II showed greater covariance with frontal and temporal regions. Interestingly, cerebellar volume showed predominantly negative relationships with CT and predominantly positive relationships with SA. Individual differences in SA are thought to be largely under genetic control while CT is thought to be more malleable by experience. This suggests that cerebellar–cortical covariation for SA may be a more stable feature, whereas covariation for CT may be more affected by development. Additionally, similarity metrics revealed that the pattern of covariance showed a gradual transition between sensorimotor and cognitive lobules, consistent with evidence of functional gradients within the cerebellum. Taken together, these findings are consistent with known patterns of structural and functional connectivity between the cerebellum and cortex. They also shed new light on possibly differing relationships between cerebellar volume and cortical thickness and surface area. Finally, our findings are consistent with the interactive specialization framework which proposes that structurally and functionally connected brain regions develop in concert.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.