Matthew Peverill, Justin D Russell, Taylor J Keding, Hailey M Rich, Max A Halvorson, Kevin M King, Rasmus M Birn, Ryan J Herringa
{"title":"平衡数据质量和偏差:跨质量控制途径调查青少年大脑认知发展℠(ABCD研究)中的功能连接排斥。","authors":"Matthew Peverill, Justin D Russell, Taylor J Keding, Hailey M Rich, Max A Halvorson, Kevin M King, Rasmus M Birn, Ryan J Herringa","doi":"10.1002/hbm.70094","DOIUrl":null,"url":null,"abstract":"<p><p>Analysis of resting state fMRI (rs-fMRI) typically excludes images substantially degraded by subject motion. However, data quality, including degree of motion, relates to a broad set of participant characteristics, particularly in pediatric neuroimaging. Consequently, when planning quality control (QC) procedures researchers must balance data quality concerns against the possibility of biasing results by eliminating data. In order to explore how researcher QC decisions might bias rs-fMRI findings and inform future research design, we investigated how a broad spectrum of participant characteristics in the Adolescent Brain and Cognitive Development (ABCD) study were related to participant inclusion/exclusion across versions of the dataset (the ABCD Community Collection and ABCD Release 4) and QC choices (specifically, motion scrubbing thresholds). Across all these conditions, we found that the odds of a participant's exclusion related to a broad spectrum of behavioral, demographic, and health-related variables, with the consequence that rs-fMRI analyses using these variables are likely to produce biased results. Consequently, we recommend that missing data be formally accounted for when analyzing rs-fMRI data and interpreting results. Our findings demonstrate the urgent need for better data acquisition and analysis techniques which minimize the impact of motion on data quality. Additionally, we strongly recommend including detailed information about quality control in open datasets such as ABCD.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 1","pages":"e70094"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717557/pdf/","citationCount":"0","resultStr":"{\"title\":\"Balancing Data Quality and Bias: Investigating Functional Connectivity Exclusions in the Adolescent Brain Cognitive Development℠ (ABCD Study) Across Quality Control Pathways.\",\"authors\":\"Matthew Peverill, Justin D Russell, Taylor J Keding, Hailey M Rich, Max A Halvorson, Kevin M King, Rasmus M Birn, Ryan J Herringa\",\"doi\":\"10.1002/hbm.70094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Analysis of resting state fMRI (rs-fMRI) typically excludes images substantially degraded by subject motion. However, data quality, including degree of motion, relates to a broad set of participant characteristics, particularly in pediatric neuroimaging. Consequently, when planning quality control (QC) procedures researchers must balance data quality concerns against the possibility of biasing results by eliminating data. In order to explore how researcher QC decisions might bias rs-fMRI findings and inform future research design, we investigated how a broad spectrum of participant characteristics in the Adolescent Brain and Cognitive Development (ABCD) study were related to participant inclusion/exclusion across versions of the dataset (the ABCD Community Collection and ABCD Release 4) and QC choices (specifically, motion scrubbing thresholds). Across all these conditions, we found that the odds of a participant's exclusion related to a broad spectrum of behavioral, demographic, and health-related variables, with the consequence that rs-fMRI analyses using these variables are likely to produce biased results. Consequently, we recommend that missing data be formally accounted for when analyzing rs-fMRI data and interpreting results. Our findings demonstrate the urgent need for better data acquisition and analysis techniques which minimize the impact of motion on data quality. Additionally, we strongly recommend including detailed information about quality control in open datasets such as ABCD.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"46 1\",\"pages\":\"e70094\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717557/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/hbm.70094\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/hbm.70094","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Balancing Data Quality and Bias: Investigating Functional Connectivity Exclusions in the Adolescent Brain Cognitive Development℠ (ABCD Study) Across Quality Control Pathways.
Analysis of resting state fMRI (rs-fMRI) typically excludes images substantially degraded by subject motion. However, data quality, including degree of motion, relates to a broad set of participant characteristics, particularly in pediatric neuroimaging. Consequently, when planning quality control (QC) procedures researchers must balance data quality concerns against the possibility of biasing results by eliminating data. In order to explore how researcher QC decisions might bias rs-fMRI findings and inform future research design, we investigated how a broad spectrum of participant characteristics in the Adolescent Brain and Cognitive Development (ABCD) study were related to participant inclusion/exclusion across versions of the dataset (the ABCD Community Collection and ABCD Release 4) and QC choices (specifically, motion scrubbing thresholds). Across all these conditions, we found that the odds of a participant's exclusion related to a broad spectrum of behavioral, demographic, and health-related variables, with the consequence that rs-fMRI analyses using these variables are likely to produce biased results. Consequently, we recommend that missing data be formally accounted for when analyzing rs-fMRI data and interpreting results. Our findings demonstrate the urgent need for better data acquisition and analysis techniques which minimize the impact of motion on data quality. Additionally, we strongly recommend including detailed information about quality control in open datasets such as ABCD.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.