Ji Eun Baek, Hahn Yi, Seung Wook Hong, Subin Song, Ji Young Lee, Sung Wook Hwang, Sang Hyoung Park, Dong-Hoon Yang, Byong Duk Ye, Seung-Jae Myung, Suk-Kyun Yang, Namkug Kim, Jeong-Sik Byeon
{"title":"人工智能模型可能有助于预测T1期结直肠癌患者的淋巴结转移","authors":"Ji Eun Baek, Hahn Yi, Seung Wook Hong, Subin Song, Ji Young Lee, Sung Wook Hwang, Sang Hyoung Park, Dong-Hoon Yang, Byong Duk Ye, Seung-Jae Myung, Suk-Kyun Yang, Namkug Kim, Jeong-Sik Byeon","doi":"10.5009/gnl240273","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>Inaccurate prediction of lymph node metastasis (LNM) may lead to unnecessary surgery following endoscopic resection of T1 colorectal cancer (CRC). We aimed to validate the usefulness of artificial intelligence (AI) models for predicting LNM in patients with T1 CRC.</p><p><strong>Methods: </strong>We analyzed the clinical data, laboratory results, pathological reports, and endoscopic findings of patients who underwent radical surgery for T1 CRC. We developed AI models to predict LNM using four algorithms: regularized logistic regression classifier (RLRC), random forest classifier (RFC), CatBoost classifier (CBC), and the voting classifier (VC). Four histological factors and four endoscopic findings were included to develop AI models. Areas under the receiver operating characteristics curves (AUROCs) were measured to distinguish AI model performance in accordance with the Japanese Society for Cancer of the Colon and Rectum guidelines.</p><p><strong>Results: </strong>Among 1,386 patients with T1 CRC, 173 patients (12.5%) had LNM. The AUROC values of the RLRC, RFC, CBC, and VC models for LNM prediction were significantly higher (0.673, 0.640, 0.679, and 0.677, respectively) than the 0.525 suggested in accordance with the Japanese Society for Cancer of the Colon and Rectum guidelines (vs RLRC, p<0.001; vs RFC, p=0.001; vs CBC, p<0.001; vs VC, p<0.001). The AUROC value was similar between T1 colon versus T1 rectal cancers (0.718 vs 0.615, p=0.700). The AUROC value was also similar between the initial endoscopic resection and initial surgery groups (0.581 vs 0.746, p=0.845).</p><p><strong>Conclusions: </strong>AI models trained on the basis of endoscopic findings and pathological features performed well in predicting LNM in patients with T1 CRC regardless of tumor location and initial treatment method.</p>","PeriodicalId":12885,"journal":{"name":"Gut and Liver","volume":" ","pages":"69-76"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736321/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence Models May Aid in Predicting Lymph Node Metastasis in Patients with T1 Colorectal Cancer.\",\"authors\":\"Ji Eun Baek, Hahn Yi, Seung Wook Hong, Subin Song, Ji Young Lee, Sung Wook Hwang, Sang Hyoung Park, Dong-Hoon Yang, Byong Duk Ye, Seung-Jae Myung, Suk-Kyun Yang, Namkug Kim, Jeong-Sik Byeon\",\"doi\":\"10.5009/gnl240273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aims: </strong>Inaccurate prediction of lymph node metastasis (LNM) may lead to unnecessary surgery following endoscopic resection of T1 colorectal cancer (CRC). We aimed to validate the usefulness of artificial intelligence (AI) models for predicting LNM in patients with T1 CRC.</p><p><strong>Methods: </strong>We analyzed the clinical data, laboratory results, pathological reports, and endoscopic findings of patients who underwent radical surgery for T1 CRC. We developed AI models to predict LNM using four algorithms: regularized logistic regression classifier (RLRC), random forest classifier (RFC), CatBoost classifier (CBC), and the voting classifier (VC). Four histological factors and four endoscopic findings were included to develop AI models. Areas under the receiver operating characteristics curves (AUROCs) were measured to distinguish AI model performance in accordance with the Japanese Society for Cancer of the Colon and Rectum guidelines.</p><p><strong>Results: </strong>Among 1,386 patients with T1 CRC, 173 patients (12.5%) had LNM. The AUROC values of the RLRC, RFC, CBC, and VC models for LNM prediction were significantly higher (0.673, 0.640, 0.679, and 0.677, respectively) than the 0.525 suggested in accordance with the Japanese Society for Cancer of the Colon and Rectum guidelines (vs RLRC, p<0.001; vs RFC, p=0.001; vs CBC, p<0.001; vs VC, p<0.001). The AUROC value was similar between T1 colon versus T1 rectal cancers (0.718 vs 0.615, p=0.700). The AUROC value was also similar between the initial endoscopic resection and initial surgery groups (0.581 vs 0.746, p=0.845).</p><p><strong>Conclusions: </strong>AI models trained on the basis of endoscopic findings and pathological features performed well in predicting LNM in patients with T1 CRC regardless of tumor location and initial treatment method.</p>\",\"PeriodicalId\":12885,\"journal\":{\"name\":\"Gut and Liver\",\"volume\":\" \",\"pages\":\"69-76\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736321/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gut and Liver\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5009/gnl240273\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut and Liver","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5009/gnl240273","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Artificial Intelligence Models May Aid in Predicting Lymph Node Metastasis in Patients with T1 Colorectal Cancer.
Background/aims: Inaccurate prediction of lymph node metastasis (LNM) may lead to unnecessary surgery following endoscopic resection of T1 colorectal cancer (CRC). We aimed to validate the usefulness of artificial intelligence (AI) models for predicting LNM in patients with T1 CRC.
Methods: We analyzed the clinical data, laboratory results, pathological reports, and endoscopic findings of patients who underwent radical surgery for T1 CRC. We developed AI models to predict LNM using four algorithms: regularized logistic regression classifier (RLRC), random forest classifier (RFC), CatBoost classifier (CBC), and the voting classifier (VC). Four histological factors and four endoscopic findings were included to develop AI models. Areas under the receiver operating characteristics curves (AUROCs) were measured to distinguish AI model performance in accordance with the Japanese Society for Cancer of the Colon and Rectum guidelines.
Results: Among 1,386 patients with T1 CRC, 173 patients (12.5%) had LNM. The AUROC values of the RLRC, RFC, CBC, and VC models for LNM prediction were significantly higher (0.673, 0.640, 0.679, and 0.677, respectively) than the 0.525 suggested in accordance with the Japanese Society for Cancer of the Colon and Rectum guidelines (vs RLRC, p<0.001; vs RFC, p=0.001; vs CBC, p<0.001; vs VC, p<0.001). The AUROC value was similar between T1 colon versus T1 rectal cancers (0.718 vs 0.615, p=0.700). The AUROC value was also similar between the initial endoscopic resection and initial surgery groups (0.581 vs 0.746, p=0.845).
Conclusions: AI models trained on the basis of endoscopic findings and pathological features performed well in predicting LNM in patients with T1 CRC regardless of tumor location and initial treatment method.
期刊介绍:
Gut and Liver is an international journal of gastroenterology, focusing on the gastrointestinal tract, liver, biliary tree, pancreas, motility, and neurogastroenterology. Gut and Liver delivers up-to-date, authoritative papers on both clinical and research-based topics in gastroenterology. The Journal publishes original articles, case reports, brief communications, letters to the editor and invited review articles in the field of gastroenterology. The Journal is operated by internationally renowned editorial boards and designed to provide a global opportunity to promote academic developments in the field of gastroenterology and hepatology.
Gut and Liver is jointly owned and operated by 8 affiliated societies in the field of gastroenterology, namely: the Korean Society of Gastroenterology, the Korean Society of Gastrointestinal Endoscopy, the Korean Society of Neurogastroenterology and Motility, the Korean College of Helicobacter and Upper Gastrointestinal Research, the Korean Association for the Study of Intestinal Diseases, the Korean Association for the Study of the Liver, the Korean Pancreatobiliary Association, and the Korean Society of Gastrointestinal Cancer.