心脏瑞诺定受体通道病变的不同分子机制。

IF 3.9 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Frontiers in Molecular Biosciences Pub Date : 2024-12-24 eCollection Date: 2024-01-01 DOI:10.3389/fmolb.2024.1505698
Yadan Zhang, Monika Seidel, Camille Rabesahala de Meritens, Astrid Beckmann, Syeda Ahmed, Melanie Hurtz, F Anthony Lai, Esther Zorio, Dimitris Parthimos, Spyros Zissimopoulos
{"title":"心脏瑞诺定受体通道病变的不同分子机制。","authors":"Yadan Zhang, Monika Seidel, Camille Rabesahala de Meritens, Astrid Beckmann, Syeda Ahmed, Melanie Hurtz, F Anthony Lai, Esther Zorio, Dimitris Parthimos, Spyros Zissimopoulos","doi":"10.3389/fmolb.2024.1505698","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Mutations in the cardiac ryanodine receptor (RyR2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). This study investigates the underlying molecular mechanisms for CPVT mutations within the RyR2 N-terminus domain (NTD).</p><p><strong>Methods and results: </strong>We consulted the high-resolution RyR2 structure in both open and closed configuration to identify mutations G357S/R407I and A77T, which lie within the NTD intra- and inter-subunit interface with the Core Solenoid (CSol), respectively. Their structural and functional roles were compared to R169L, a mutation that lies within the NTD-NTD inter-subunit interface. Using chemical cross-linking and co-immunoprecipitation assays, we show that R169L disrupts NTD tetramerization, while it does not alter the NTD-CSol interaction. Single cell Ca<sup>2+</sup> imaging revealed that R169L increases the number of spontaneous Ca<sup>2+</sup> transients and the proportion of oscillating cells, while reducing the Ca<sup>2+</sup> store content. G357S and R407I do not affect NTD tetramerization, but they also do not alter the NTD-CSol interaction. Functionally, RyR2<sup>G357S</sup>-expressing cells have Ca<sup>2+</sup> handling properties similar to RyR2<sup>WT</sup>. A77T enhances the NTD-CSol interaction, while it does not affect NTD tetramerization. Like R169L, A77T also increases the number of spontaneous Ca<sup>2+</sup> transients and the proportion of oscillating cells, and it reduces the Ca<sup>2+</sup> store content. However, unlike R169L that displays Ca<sup>2+</sup> transients of normal amplitude and shorter duration, Ca<sup>2+</sup> transients for A77T are of smaller amplitude and normal duration.</p><p><strong>Conclusion: </strong>The NTD-CSol inter-subunit interface variant, A77T, produces a hyperactive channel by altering a different structure-function parameter to other CPVT mutations within the RyR2 NTD. Reduced NTD-NTD inter-subunit interaction and reinforced NTD inter-subunit interaction with CSol are distinct molecular mechanisms for gain-of-function RyR2 arrhythmogenic mutations.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"11 ","pages":"1505698"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703740/pdf/","citationCount":"0","resultStr":"{\"title\":\"Disparate molecular mechanisms in cardiac ryanodine receptor channelopathies.\",\"authors\":\"Yadan Zhang, Monika Seidel, Camille Rabesahala de Meritens, Astrid Beckmann, Syeda Ahmed, Melanie Hurtz, F Anthony Lai, Esther Zorio, Dimitris Parthimos, Spyros Zissimopoulos\",\"doi\":\"10.3389/fmolb.2024.1505698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Mutations in the cardiac ryanodine receptor (RyR2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). This study investigates the underlying molecular mechanisms for CPVT mutations within the RyR2 N-terminus domain (NTD).</p><p><strong>Methods and results: </strong>We consulted the high-resolution RyR2 structure in both open and closed configuration to identify mutations G357S/R407I and A77T, which lie within the NTD intra- and inter-subunit interface with the Core Solenoid (CSol), respectively. Their structural and functional roles were compared to R169L, a mutation that lies within the NTD-NTD inter-subunit interface. Using chemical cross-linking and co-immunoprecipitation assays, we show that R169L disrupts NTD tetramerization, while it does not alter the NTD-CSol interaction. Single cell Ca<sup>2+</sup> imaging revealed that R169L increases the number of spontaneous Ca<sup>2+</sup> transients and the proportion of oscillating cells, while reducing the Ca<sup>2+</sup> store content. G357S and R407I do not affect NTD tetramerization, but they also do not alter the NTD-CSol interaction. Functionally, RyR2<sup>G357S</sup>-expressing cells have Ca<sup>2+</sup> handling properties similar to RyR2<sup>WT</sup>. A77T enhances the NTD-CSol interaction, while it does not affect NTD tetramerization. Like R169L, A77T also increases the number of spontaneous Ca<sup>2+</sup> transients and the proportion of oscillating cells, and it reduces the Ca<sup>2+</sup> store content. However, unlike R169L that displays Ca<sup>2+</sup> transients of normal amplitude and shorter duration, Ca<sup>2+</sup> transients for A77T are of smaller amplitude and normal duration.</p><p><strong>Conclusion: </strong>The NTD-CSol inter-subunit interface variant, A77T, produces a hyperactive channel by altering a different structure-function parameter to other CPVT mutations within the RyR2 NTD. Reduced NTD-NTD inter-subunit interaction and reinforced NTD inter-subunit interaction with CSol are distinct molecular mechanisms for gain-of-function RyR2 arrhythmogenic mutations.</p>\",\"PeriodicalId\":12465,\"journal\":{\"name\":\"Frontiers in Molecular Biosciences\",\"volume\":\"11 \",\"pages\":\"1505698\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703740/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Molecular Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmolb.2024.1505698\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2024.1505698","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:心脏ryanodine受体(RyR2)突变与儿茶酚胺能多态性室性心动过速(CPVT)相关。本研究探讨了RyR2 n端结构域(NTD)内CPVT突变的潜在分子机制。方法和结果:我们参考了开放和封闭配置的高分辨率RyR2结构来识别突变G357S/R407I和A77T,它们分别位于NTD与核心螺线管(CSol)的亚基内和亚基间界面。将它们的结构和功能作用与R169L进行了比较,R169L是位于NTD-NTD亚基间界面的突变。通过化学交联和共免疫沉淀实验,我们发现R169L破坏了NTD的四聚化,而不改变NTD- csol的相互作用。单细胞Ca2+成像显示,R169L增加了自发Ca2+瞬态的数量和振荡细胞的比例,同时降低了Ca2+的储存含量。G357S和R407I不影响NTD的四聚化,但它们也不改变NTD- csol的相互作用。在功能上,表达ryr2g357s的细胞具有与RyR2WT相似的Ca2+处理特性。A77T增强了NTD- csol的相互作用,但不影响NTD的四聚化。与R169L一样,A77T也增加了自发Ca2+瞬态的数量和振荡细胞的比例,并降低了Ca2+的储存含量。然而,与R169L不同,A77T的Ca2+瞬态振幅较小,持续时间较短,而R169L的Ca2+瞬态振幅较小,持续时间较短。结论:NTD- csol亚基间界面变异体A77T通过改变RyR2 NTD内不同于其他CPVT突变的结构-功能参数,产生了一个超活性通道。减少NTD-NTD亚基间相互作用和增强NTD亚基间与CSol的相互作用是RyR2功能获得性心律失常突变的不同分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disparate molecular mechanisms in cardiac ryanodine receptor channelopathies.

Aims: Mutations in the cardiac ryanodine receptor (RyR2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). This study investigates the underlying molecular mechanisms for CPVT mutations within the RyR2 N-terminus domain (NTD).

Methods and results: We consulted the high-resolution RyR2 structure in both open and closed configuration to identify mutations G357S/R407I and A77T, which lie within the NTD intra- and inter-subunit interface with the Core Solenoid (CSol), respectively. Their structural and functional roles were compared to R169L, a mutation that lies within the NTD-NTD inter-subunit interface. Using chemical cross-linking and co-immunoprecipitation assays, we show that R169L disrupts NTD tetramerization, while it does not alter the NTD-CSol interaction. Single cell Ca2+ imaging revealed that R169L increases the number of spontaneous Ca2+ transients and the proportion of oscillating cells, while reducing the Ca2+ store content. G357S and R407I do not affect NTD tetramerization, but they also do not alter the NTD-CSol interaction. Functionally, RyR2G357S-expressing cells have Ca2+ handling properties similar to RyR2WT. A77T enhances the NTD-CSol interaction, while it does not affect NTD tetramerization. Like R169L, A77T also increases the number of spontaneous Ca2+ transients and the proportion of oscillating cells, and it reduces the Ca2+ store content. However, unlike R169L that displays Ca2+ transients of normal amplitude and shorter duration, Ca2+ transients for A77T are of smaller amplitude and normal duration.

Conclusion: The NTD-CSol inter-subunit interface variant, A77T, produces a hyperactive channel by altering a different structure-function parameter to other CPVT mutations within the RyR2 NTD. Reduced NTD-NTD inter-subunit interaction and reinforced NTD inter-subunit interaction with CSol are distinct molecular mechanisms for gain-of-function RyR2 arrhythmogenic mutations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Molecular Biosciences
Frontiers in Molecular Biosciences Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.20
自引率
4.00%
发文量
1361
审稿时长
14 weeks
期刊介绍: Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology. Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life. In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信