医学图像精确边界分割的互包含机制。

IF 4.3 3区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Frontiers in Bioengineering and Biotechnology Pub Date : 2024-12-24 eCollection Date: 2024-01-01 DOI:10.3389/fbioe.2024.1504249
Yizhi Pan, Junyi Xin, Tianhua Yang, Siqi Li, Le-Minh Nguyen, Teeradaj Racharak, Kai Li, Guanqun Sun
{"title":"医学图像精确边界分割的互包含机制。","authors":"Yizhi Pan, Junyi Xin, Tianhua Yang, Siqi Li, Le-Minh Nguyen, Teeradaj Racharak, Kai Li, Guanqun Sun","doi":"10.3389/fbioe.2024.1504249","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Accurate image segmentation is crucial in medical imaging for quantifying diseases, assessing prognosis, and evaluating treatment outcomes. However, existing methods often fall short in integrating global and local features in a meaningful way, failing to give sufficient attention to abnormal regions and boundary details in medical images. These limitations hinder the effectiveness of segmentation techniques in clinical settings. To address these issues, we propose a novel deep learning-based approach, MIPC-Net, designed for precise boundary segmentation in medical images.</p><p><strong>Methods: </strong>Our approach, inspired by radiologists' working patterns, introduces two distinct modules: 1. Mutual Inclusion of Position and Channel Attention (MIPC) Module: To improve boundary segmentation precision, we present the MIPC module. This module enhances the focus on channel information while extracting position features and vice versa, effectively enhancing the segmentation of boundaries in medical images. 2. Skip-Residue Module: To optimize the restoration of medical images, we introduce Skip-Residue, a global residual connection. This module improves the integration of the encoder and decoder by filtering out irrelevant information and recovering the most crucial information lost during the feature extraction process.</p><p><strong>Results: </strong>We evaluate the performance of MIPC-Net on three publicly accessible datasets: Synapse, ISIC2018-Task, and Segpc. The evaluation uses metrics such as the Dice coefficient (DSC) and Hausdorff Distance (HD). Our ablation study confirms that each module contributes to the overall improvement of segmentation quality. Notably, with the integration of both modules, our model outperforms state-of-the-art methods across all metrics. Specifically, MIPC-Net achieves a 2.23 mm reduction in Hausdorff Distance on the Synapse dataset, highlighting the model's enhanced capability for precise image boundary segmentation.</p><p><strong>Conclusion: </strong>The introduction of the novel MIPC and Skip-Residue modules significantly improves feature extraction accuracy, leading to better boundary recognition in medical image segmentation tasks. Our approach demonstrates substantial improvements over existing methods, as evidenced by the results on benchmark datasets.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"12 ","pages":"1504249"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704489/pdf/","citationCount":"0","resultStr":"{\"title\":\"A mutual inclusion mechanism for precise boundary segmentation in medical images.\",\"authors\":\"Yizhi Pan, Junyi Xin, Tianhua Yang, Siqi Li, Le-Minh Nguyen, Teeradaj Racharak, Kai Li, Guanqun Sun\",\"doi\":\"10.3389/fbioe.2024.1504249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Accurate image segmentation is crucial in medical imaging for quantifying diseases, assessing prognosis, and evaluating treatment outcomes. However, existing methods often fall short in integrating global and local features in a meaningful way, failing to give sufficient attention to abnormal regions and boundary details in medical images. These limitations hinder the effectiveness of segmentation techniques in clinical settings. To address these issues, we propose a novel deep learning-based approach, MIPC-Net, designed for precise boundary segmentation in medical images.</p><p><strong>Methods: </strong>Our approach, inspired by radiologists' working patterns, introduces two distinct modules: 1. Mutual Inclusion of Position and Channel Attention (MIPC) Module: To improve boundary segmentation precision, we present the MIPC module. This module enhances the focus on channel information while extracting position features and vice versa, effectively enhancing the segmentation of boundaries in medical images. 2. Skip-Residue Module: To optimize the restoration of medical images, we introduce Skip-Residue, a global residual connection. This module improves the integration of the encoder and decoder by filtering out irrelevant information and recovering the most crucial information lost during the feature extraction process.</p><p><strong>Results: </strong>We evaluate the performance of MIPC-Net on three publicly accessible datasets: Synapse, ISIC2018-Task, and Segpc. The evaluation uses metrics such as the Dice coefficient (DSC) and Hausdorff Distance (HD). Our ablation study confirms that each module contributes to the overall improvement of segmentation quality. Notably, with the integration of both modules, our model outperforms state-of-the-art methods across all metrics. Specifically, MIPC-Net achieves a 2.23 mm reduction in Hausdorff Distance on the Synapse dataset, highlighting the model's enhanced capability for precise image boundary segmentation.</p><p><strong>Conclusion: </strong>The introduction of the novel MIPC and Skip-Residue modules significantly improves feature extraction accuracy, leading to better boundary recognition in medical image segmentation tasks. Our approach demonstrates substantial improvements over existing methods, as evidenced by the results on benchmark datasets.</p>\",\"PeriodicalId\":12444,\"journal\":{\"name\":\"Frontiers in Bioengineering and Biotechnology\",\"volume\":\"12 \",\"pages\":\"1504249\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704489/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Bioengineering and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fbioe.2024.1504249\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2024.1504249","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在医学成像中,准确的图像分割对于量化疾病、评估预后和评估治疗结果至关重要。然而,现有的方法往往不能有效地整合整体和局部特征,不能对医学图像中的异常区域和边界细节给予足够的关注。这些限制阻碍了分割技术在临床环境中的有效性。为了解决这些问题,我们提出了一种新的基于深度学习的方法,MIPC-Net,用于医学图像的精确边界分割。方法:我们的方法受到放射科医生工作模式的启发,引入了两个不同的模块:1。位置和信道注意互包含模块:为了提高边界分割的精度,我们提出了位置和信道注意互包含模块。该模块在提取位置特征的同时增强了对通道信息的关注,反之亦然,有效增强了医学图像中边界的分割。2. skip -残差模块:为了优化医学图像的恢复,我们引入了全局残差连接skip -残差。该模块通过滤除不相关信息和恢复特征提取过程中丢失的最重要信息,提高了编码器和解码器的集成度。结果:我们评估了MIPC-Net在三个可公开访问的数据集上的性能:Synapse、ISIC2018-Task和Segpc。评估使用骰子系数(DSC)和豪斯多夫距离(HD)等指标。我们的消融研究证实,每个模块都有助于整体提高分割质量。值得注意的是,通过这两个模块的集成,我们的模型在所有指标上都优于最先进的方法。具体来说,MIPC-Net在Synapse数据集上实现了2.23 mm的Hausdorff距离减小,突出了该模型在精确图像边界分割方面的增强能力。结论:新型MIPC和skip -残基模块的引入,显著提高了特征提取的准确率,在医学图像分割任务中实现了更好的边界识别。在基准数据集上的结果证明,我们的方法比现有方法有了实质性的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A mutual inclusion mechanism for precise boundary segmentation in medical images.

Introduction: Accurate image segmentation is crucial in medical imaging for quantifying diseases, assessing prognosis, and evaluating treatment outcomes. However, existing methods often fall short in integrating global and local features in a meaningful way, failing to give sufficient attention to abnormal regions and boundary details in medical images. These limitations hinder the effectiveness of segmentation techniques in clinical settings. To address these issues, we propose a novel deep learning-based approach, MIPC-Net, designed for precise boundary segmentation in medical images.

Methods: Our approach, inspired by radiologists' working patterns, introduces two distinct modules: 1. Mutual Inclusion of Position and Channel Attention (MIPC) Module: To improve boundary segmentation precision, we present the MIPC module. This module enhances the focus on channel information while extracting position features and vice versa, effectively enhancing the segmentation of boundaries in medical images. 2. Skip-Residue Module: To optimize the restoration of medical images, we introduce Skip-Residue, a global residual connection. This module improves the integration of the encoder and decoder by filtering out irrelevant information and recovering the most crucial information lost during the feature extraction process.

Results: We evaluate the performance of MIPC-Net on three publicly accessible datasets: Synapse, ISIC2018-Task, and Segpc. The evaluation uses metrics such as the Dice coefficient (DSC) and Hausdorff Distance (HD). Our ablation study confirms that each module contributes to the overall improvement of segmentation quality. Notably, with the integration of both modules, our model outperforms state-of-the-art methods across all metrics. Specifically, MIPC-Net achieves a 2.23 mm reduction in Hausdorff Distance on the Synapse dataset, highlighting the model's enhanced capability for precise image boundary segmentation.

Conclusion: The introduction of the novel MIPC and Skip-Residue modules significantly improves feature extraction accuracy, leading to better boundary recognition in medical image segmentation tasks. Our approach demonstrates substantial improvements over existing methods, as evidenced by the results on benchmark datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Bioengineering and Biotechnology
Frontiers in Bioengineering and Biotechnology Chemical Engineering-Bioengineering
CiteScore
8.30
自引率
5.30%
发文量
2270
审稿时长
12 weeks
期刊介绍: The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs. In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信