口服阿莫西林治疗会破坏肠道微生物组和代谢组,但不会干扰Wistar Han大鼠肠道的腔内氧化还原电位。

IF 3.5 3区 生物学 Q2 MICROBIOLOGY
Sandra Bermúdez-Sánchez, Martin Iain Bahl, Egon Bech Hansen, Tine Rask Licht, Martin Frederik Laursen
{"title":"口服阿莫西林治疗会破坏肠道微生物组和代谢组,但不会干扰Wistar Han大鼠肠道的腔内氧化还原电位。","authors":"Sandra Bermúdez-Sánchez, Martin Iain Bahl, Egon Bech Hansen, Tine Rask Licht, Martin Frederik Laursen","doi":"10.1093/femsec/fiaf003","DOIUrl":null,"url":null,"abstract":"<p><p>Oral antibiotic treatment is well known to be one of the main factors affecting gut microbiota composition by altering bacterial diversity. It decreases the abundance of butyrate-producing bacteria such as Lachnospiraceae and Ruminococcaceae, while increasing abundance of Enterobacteriaceae. The recovery time of commensal bacteria post-antibiotic treatment varies among individuals, and often, complete recovery is not achieved. Recently, gut microbiota disruption has been associated with increased gut oxygen levels and higher redox potential in faecal samples. Given that redox balance is crucial for microbial metabolism and gut health, influencing fermentation processes and maintaining anaerobic conditions, we investigated the impact of oral amoxicillin treatment on the redox potential in the caecum. We used 24 Wistar Han male rats and measured caecal redox potential in situ with a probe, before and after 7 days of amoxicillin treatment, as well as after 7 days of recovery. Additionally, we analysed caecal weight, pH, antioxidant capacity, caecal microbiota, metabolome, and colonic tissue expression of relevant genes involved in the redox potential state. Our findings show that oral amoxicillin treatment significantly reduced archaeal load, and decreased the bacterial alpha diversity and affected bacterial composition of the caecal microbiome. The caecal metabolome was also significantly affected, exemplified by reduced amounts of short chain fatty acids during amoxicillin treatment. While the caecal metabolome fully recovered 7 days post amoxicillin treatment, the microbiome did not fully recover within this time frame. However, amoxicillin did not lead to an increase in luminal redox potential in the cecum during or post amoxicillin treatment. Limited differences were observed for colonic expression of genes involved in intestinal barrier function and generation of reactive oxygen species, except for the catalase gene, which was significantly upregulated post-amoxicillin treatment. Our results suggest that while oral amoxicillin disrupts the gut microbiome and metabolome, it does not directly interfere with gut luminal redox state.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oral amoxicillin treatment disrupts the gut microbiome and metabolome without interfering with luminal redox potential in the intestine of Wistar Han rats.\",\"authors\":\"Sandra Bermúdez-Sánchez, Martin Iain Bahl, Egon Bech Hansen, Tine Rask Licht, Martin Frederik Laursen\",\"doi\":\"10.1093/femsec/fiaf003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oral antibiotic treatment is well known to be one of the main factors affecting gut microbiota composition by altering bacterial diversity. It decreases the abundance of butyrate-producing bacteria such as Lachnospiraceae and Ruminococcaceae, while increasing abundance of Enterobacteriaceae. The recovery time of commensal bacteria post-antibiotic treatment varies among individuals, and often, complete recovery is not achieved. Recently, gut microbiota disruption has been associated with increased gut oxygen levels and higher redox potential in faecal samples. Given that redox balance is crucial for microbial metabolism and gut health, influencing fermentation processes and maintaining anaerobic conditions, we investigated the impact of oral amoxicillin treatment on the redox potential in the caecum. We used 24 Wistar Han male rats and measured caecal redox potential in situ with a probe, before and after 7 days of amoxicillin treatment, as well as after 7 days of recovery. Additionally, we analysed caecal weight, pH, antioxidant capacity, caecal microbiota, metabolome, and colonic tissue expression of relevant genes involved in the redox potential state. Our findings show that oral amoxicillin treatment significantly reduced archaeal load, and decreased the bacterial alpha diversity and affected bacterial composition of the caecal microbiome. The caecal metabolome was also significantly affected, exemplified by reduced amounts of short chain fatty acids during amoxicillin treatment. While the caecal metabolome fully recovered 7 days post amoxicillin treatment, the microbiome did not fully recover within this time frame. However, amoxicillin did not lead to an increase in luminal redox potential in the cecum during or post amoxicillin treatment. Limited differences were observed for colonic expression of genes involved in intestinal barrier function and generation of reactive oxygen species, except for the catalase gene, which was significantly upregulated post-amoxicillin treatment. Our results suggest that while oral amoxicillin disrupts the gut microbiome and metabolome, it does not directly interfere with gut luminal redox state.</p>\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiaf003\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf003","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,口服抗生素治疗是通过改变细菌多样性来影响肠道微生物群组成的主要因素之一。它降低了产丁酸菌(如Lachnospiraceae和Ruminococcaceae)的丰度,而增加了肠杆菌科(enterobacteraceae)的丰度。抗生素治疗后共生菌的恢复时间因人而异,往往不能完全恢复。最近,肠道微生物群的破坏与肠道氧水平的增加和粪便样本中更高的氧化还原电位有关。鉴于氧化还原平衡对微生物代谢和肠道健康至关重要,影响发酵过程和维持厌氧条件,我们研究了口服阿莫西林对盲肠氧化还原电位的影响。我们选用24只Wistar Han雄性大鼠,在阿莫西林治疗前、治疗后7天,以及康复后7天,用探针原位测量盲肠氧化还原电位。此外,我们分析了盲肠重量、pH值、抗氧化能力、盲肠微生物群、代谢组和参与氧化还原电位状态的相关基因的结肠组织表达。我们的研究结果表明,口服阿莫西林治疗显著降低了古菌负荷,降低了细菌α多样性,并影响了盲肠微生物组的细菌组成。盲肠代谢组也受到显著影响,例如阿莫西林治疗期间短链脂肪酸的减少。虽然盲肠代谢组在阿莫西林治疗后7天完全恢复,但微生物组在这段时间内没有完全恢复。然而,在阿莫西林治疗期间或之后,阿莫西林不会导致盲肠腔氧化还原电位的增加。除过氧化氢酶基因外,参与肠屏障功能和活性氧生成的基因在阿莫西林治疗后显著上调,其余基因的结肠表达差异有限。我们的研究结果表明,虽然口服阿莫西林会破坏肠道微生物组和代谢组,但它不会直接干扰肠道氧化还原状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oral amoxicillin treatment disrupts the gut microbiome and metabolome without interfering with luminal redox potential in the intestine of Wistar Han rats.

Oral antibiotic treatment is well known to be one of the main factors affecting gut microbiota composition by altering bacterial diversity. It decreases the abundance of butyrate-producing bacteria such as Lachnospiraceae and Ruminococcaceae, while increasing abundance of Enterobacteriaceae. The recovery time of commensal bacteria post-antibiotic treatment varies among individuals, and often, complete recovery is not achieved. Recently, gut microbiota disruption has been associated with increased gut oxygen levels and higher redox potential in faecal samples. Given that redox balance is crucial for microbial metabolism and gut health, influencing fermentation processes and maintaining anaerobic conditions, we investigated the impact of oral amoxicillin treatment on the redox potential in the caecum. We used 24 Wistar Han male rats and measured caecal redox potential in situ with a probe, before and after 7 days of amoxicillin treatment, as well as after 7 days of recovery. Additionally, we analysed caecal weight, pH, antioxidant capacity, caecal microbiota, metabolome, and colonic tissue expression of relevant genes involved in the redox potential state. Our findings show that oral amoxicillin treatment significantly reduced archaeal load, and decreased the bacterial alpha diversity and affected bacterial composition of the caecal microbiome. The caecal metabolome was also significantly affected, exemplified by reduced amounts of short chain fatty acids during amoxicillin treatment. While the caecal metabolome fully recovered 7 days post amoxicillin treatment, the microbiome did not fully recover within this time frame. However, amoxicillin did not lead to an increase in luminal redox potential in the cecum during or post amoxicillin treatment. Limited differences were observed for colonic expression of genes involved in intestinal barrier function and generation of reactive oxygen species, except for the catalase gene, which was significantly upregulated post-amoxicillin treatment. Our results suggest that while oral amoxicillin disrupts the gut microbiome and metabolome, it does not directly interfere with gut luminal redox state.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信