温度和随机力对多稳定系统相变的影响。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2024-12-18 DOI:10.3390/e26121109
Giuseppe Florio, Stefano Giordano, Giuseppe Puglisi
{"title":"温度和随机力对多稳定系统相变的影响。","authors":"Giuseppe Florio, Stefano Giordano, Giuseppe Puglisi","doi":"10.3390/e26121109","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-stable behavior at the microscopic length-scale is fundamental for phase transformation phenomena observed in many materials. These phenomena can be driven not only by external mechanical forces but are also crucially influenced by disorder and thermal fluctuations. Disorder, arising from structural defects or fluctuations in external stimuli, disrupts the homogeneity of the material and can significantly alter the system's response, often leading to the suppression of cooperativity in the phase transition. Temperature can further introduce novel effects, modifying energy barriers and transition rates. The study of the effects of fluctuations requires the use of a framework that naturally incorporates the interaction of the system with the environment, such as Statistical Mechanics to account for the role of temperature. In the case of complex phenomena induced by disorder, advanced methods such as the replica method (to derive analytical formulas) or refined numerical methods based, for instance, on Monte Carlo techniques, may be needed. In particular, employing models that incorporate the main features of the physical system under investigation and allow for analytical results that can be compared with experimental data is of paramount importance for describing many realistic physical phenomena, which are often studied while neglecting the critical effect of randomness or by utilizing numerical techniques. Additionally, it is fundamental to efficiently derive the macroscopic material behavior from microscale properties, rather than relying solely on phenomenological approaches. In this perspective, we focus on a paradigmatic model that includes both nearest-neighbor interactions with multi-stable (elastic) energy terms and linear long-range interactions, capable of ensuring the presence of an ordered phase. Specifically, to study the effect of environmental noise on the control of the system, we include random fluctuation in external forces. We numerically analyze, on a small-size system, how the interplay of temperature and disorder can significantly alter the system's phase transition behavior. Moreover, by mapping the model onto a modified version of the Random Field Ising Model, we utilize the replica method approach in the thermodynamic limit to justify the numerical results through analytical insights.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675775/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of Temperature and Random Forces in Phase Transformation of Multi-Stable Systems.\",\"authors\":\"Giuseppe Florio, Stefano Giordano, Giuseppe Puglisi\",\"doi\":\"10.3390/e26121109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multi-stable behavior at the microscopic length-scale is fundamental for phase transformation phenomena observed in many materials. These phenomena can be driven not only by external mechanical forces but are also crucially influenced by disorder and thermal fluctuations. Disorder, arising from structural defects or fluctuations in external stimuli, disrupts the homogeneity of the material and can significantly alter the system's response, often leading to the suppression of cooperativity in the phase transition. Temperature can further introduce novel effects, modifying energy barriers and transition rates. The study of the effects of fluctuations requires the use of a framework that naturally incorporates the interaction of the system with the environment, such as Statistical Mechanics to account for the role of temperature. In the case of complex phenomena induced by disorder, advanced methods such as the replica method (to derive analytical formulas) or refined numerical methods based, for instance, on Monte Carlo techniques, may be needed. In particular, employing models that incorporate the main features of the physical system under investigation and allow for analytical results that can be compared with experimental data is of paramount importance for describing many realistic physical phenomena, which are often studied while neglecting the critical effect of randomness or by utilizing numerical techniques. Additionally, it is fundamental to efficiently derive the macroscopic material behavior from microscale properties, rather than relying solely on phenomenological approaches. In this perspective, we focus on a paradigmatic model that includes both nearest-neighbor interactions with multi-stable (elastic) energy terms and linear long-range interactions, capable of ensuring the presence of an ordered phase. Specifically, to study the effect of environmental noise on the control of the system, we include random fluctuation in external forces. We numerically analyze, on a small-size system, how the interplay of temperature and disorder can significantly alter the system's phase transition behavior. Moreover, by mapping the model onto a modified version of the Random Field Ising Model, we utilize the replica method approach in the thermodynamic limit to justify the numerical results through analytical insights.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"26 12\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675775/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26121109\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121109","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

微观长度尺度上的多稳定行为是许多材料中观察到的相变现象的基础。这些现象不仅可以由外部机械力驱动,而且还受到无序和热波动的重要影响。由结构缺陷或外部刺激的波动引起的无序破坏了材料的均匀性,并可以显著改变系统的响应,通常导致相变中的协同性受到抑制。温度可以进一步引入新的效应,改变能量势垒和跃迁速率。对波动影响的研究需要使用一种框架,这种框架自然地结合了系统与环境的相互作用,例如统计力学来解释温度的作用。在由无序引起的复杂现象的情况下,可能需要先进的方法,如复制法(导出解析公式)或基于蒙特卡罗技术的精细数值方法。特别是,采用结合所研究的物理系统的主要特征并允许与实验数据进行比较的分析结果的模型对于描述许多现实的物理现象至关重要,这些现象经常在忽略随机性的关键影响或利用数值技术的情况下进行研究。此外,有效地从微观尺度的性质推导出宏观的材料行为,而不是仅仅依赖于现象学的方法是至关重要的。从这个角度来看,我们关注的是一个范式模型,该模型既包括具有多稳定(弹性)能量项的最近邻相互作用,也包括能够确保有序相位存在的线性远程相互作用。具体来说,为了研究环境噪声对系统控制的影响,我们考虑了外力的随机波动。我们数值分析,在一个小尺寸的系统,如何相互作用的温度和无序可以显著改变系统的相变行为。此外,通过将模型映射到随机场Ising模型的修改版本,我们利用热力学极限中的复制方法通过分析见解来证明数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Temperature and Random Forces in Phase Transformation of Multi-Stable Systems.

Multi-stable behavior at the microscopic length-scale is fundamental for phase transformation phenomena observed in many materials. These phenomena can be driven not only by external mechanical forces but are also crucially influenced by disorder and thermal fluctuations. Disorder, arising from structural defects or fluctuations in external stimuli, disrupts the homogeneity of the material and can significantly alter the system's response, often leading to the suppression of cooperativity in the phase transition. Temperature can further introduce novel effects, modifying energy barriers and transition rates. The study of the effects of fluctuations requires the use of a framework that naturally incorporates the interaction of the system with the environment, such as Statistical Mechanics to account for the role of temperature. In the case of complex phenomena induced by disorder, advanced methods such as the replica method (to derive analytical formulas) or refined numerical methods based, for instance, on Monte Carlo techniques, may be needed. In particular, employing models that incorporate the main features of the physical system under investigation and allow for analytical results that can be compared with experimental data is of paramount importance for describing many realistic physical phenomena, which are often studied while neglecting the critical effect of randomness or by utilizing numerical techniques. Additionally, it is fundamental to efficiently derive the macroscopic material behavior from microscale properties, rather than relying solely on phenomenological approaches. In this perspective, we focus on a paradigmatic model that includes both nearest-neighbor interactions with multi-stable (elastic) energy terms and linear long-range interactions, capable of ensuring the presence of an ordered phase. Specifically, to study the effect of environmental noise on the control of the system, we include random fluctuation in external forces. We numerically analyze, on a small-size system, how the interplay of temperature and disorder can significantly alter the system's phase transition behavior. Moreover, by mapping the model onto a modified version of the Random Field Ising Model, we utilize the replica method approach in the thermodynamic limit to justify the numerical results through analytical insights.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信