椭圆相关数据的贝叶斯回归分析。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2024-12-09 DOI:10.3390/e26121072
Yian Yu, Long Tang, Kang Ren, Zhonglue Chen, Shengdi Chen, Jianqing Shi
{"title":"椭圆相关数据的贝叶斯回归分析。","authors":"Yian Yu, Long Tang, Kang Ren, Zhonglue Chen, Shengdi Chen, Jianqing Shi","doi":"10.3390/e26121072","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a parametric hierarchical model for functional data with an elliptical shape, using a Gaussian process prior to capturing the data dependencies that reflect systematic errors while modeling the underlying curved shape through a von Mises-Fisher distribution. The model definition, Bayesian inference, and MCMC algorithm are discussed. The effectiveness of the model is demonstrated through the reconstruction of curved trajectories using both simulated and real-world examples. The discussion in this paper focuses on two-dimensional problems, but the framework can be extended to higher-dimensional spaces, making it adaptable to a wide range of applications.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675188/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bayesian Regression Analysis for Dependent Data with an Elliptical Shape.\",\"authors\":\"Yian Yu, Long Tang, Kang Ren, Zhonglue Chen, Shengdi Chen, Jianqing Shi\",\"doi\":\"10.3390/e26121072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper proposes a parametric hierarchical model for functional data with an elliptical shape, using a Gaussian process prior to capturing the data dependencies that reflect systematic errors while modeling the underlying curved shape through a von Mises-Fisher distribution. The model definition, Bayesian inference, and MCMC algorithm are discussed. The effectiveness of the model is demonstrated through the reconstruction of curved trajectories using both simulated and real-world examples. The discussion in this paper focuses on two-dimensional problems, but the framework can be extended to higher-dimensional spaces, making it adaptable to a wide range of applications.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"26 12\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675188/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26121072\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121072","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了具有椭圆形状的功能数据的参数分层模型,在通过von Mises-Fisher分布建模底层曲线形状时,在捕获反映系统误差的数据依赖关系之前,使用高斯过程。讨论了模型定义、贝叶斯推理和MCMC算法。该模型的有效性通过模拟和实际实例的曲线轨迹重建得到了验证。本文主要讨论二维问题,但该框架可以扩展到高维空间,使其适用于广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Regression Analysis for Dependent Data with an Elliptical Shape.

This paper proposes a parametric hierarchical model for functional data with an elliptical shape, using a Gaussian process prior to capturing the data dependencies that reflect systematic errors while modeling the underlying curved shape through a von Mises-Fisher distribution. The model definition, Bayesian inference, and MCMC algorithm are discussed. The effectiveness of the model is demonstrated through the reconstruction of curved trajectories using both simulated and real-world examples. The discussion in this paper focuses on two-dimensional problems, but the framework can be extended to higher-dimensional spaces, making it adaptable to a wide range of applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信