掺杂石墨烯的热力学行为:重掺杂原子的影响。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2024-12-14 DOI:10.3390/e26121093
L Palma-Chilla, Juan A Lazzús
{"title":"掺杂石墨烯的热力学行为:重掺杂原子的影响。","authors":"L Palma-Chilla, Juan A Lazzús","doi":"10.3390/e26121093","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the effect of incorporating heavy dopant atoms on the topological transitions in the energy spectrum of graphene, as well as on its thermodynamic properties. A tight-binding model is employed that incorporates a lattice composition parameter associated with the dopant's effect to obtain the electronic spectrum of graphene. Thus, the substitutional atoms in the lattice impact the electronic structure of graphene by altering the connectivity of the Dirac cones and the symmetry of the energy surface in their spectrum. The Gibbs entropy is numerically calculated from the energy surface of the electronic spectrum, and other thermodynamic properties, such as temperature, specific heat, and Helmholtz free energy, are derived from theoretical principles. The results show that topological changes induced by the heavy dopant atoms in the graphene lattice significantly affect its electronic structure and thermodynamic properties, leading to observable changes in the distances between Dirac cones, the range of the energy spectrum, entropy, positive and negative temperatures, divergences in specific heat, and instabilities within the system.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675787/pdf/","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic Behavior of Doped Graphene: Impact of Heavy Dopant Atoms.\",\"authors\":\"L Palma-Chilla, Juan A Lazzús\",\"doi\":\"10.3390/e26121093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the effect of incorporating heavy dopant atoms on the topological transitions in the energy spectrum of graphene, as well as on its thermodynamic properties. A tight-binding model is employed that incorporates a lattice composition parameter associated with the dopant's effect to obtain the electronic spectrum of graphene. Thus, the substitutional atoms in the lattice impact the electronic structure of graphene by altering the connectivity of the Dirac cones and the symmetry of the energy surface in their spectrum. The Gibbs entropy is numerically calculated from the energy surface of the electronic spectrum, and other thermodynamic properties, such as temperature, specific heat, and Helmholtz free energy, are derived from theoretical principles. The results show that topological changes induced by the heavy dopant atoms in the graphene lattice significantly affect its electronic structure and thermodynamic properties, leading to observable changes in the distances between Dirac cones, the range of the energy spectrum, entropy, positive and negative temperatures, divergences in specific heat, and instabilities within the system.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"26 12\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675787/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26121093\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121093","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了加入重掺杂原子对石墨烯能谱拓扑跃迁的影响,以及对其热力学性质的影响。采用了一个紧密结合模型,该模型包含了与掺杂剂效应相关的晶格组成参数,以获得石墨烯的电子谱。因此,晶格中的取代原子通过改变狄拉克锥的连通性及其光谱中能量表面的对称性来影响石墨烯的电子结构。吉布斯熵是从电子能谱的能量面数值计算出来的,其他热力学性质,如温度、比热和亥姆霍兹自由能,都是从理论原理推导出来的。结果表明,石墨烯晶格中重掺杂原子引起的拓扑变化显著影响其电子结构和热力学性质,导致系统内Dirac锥间距、能谱范围、熵、正负温度、比热散度和不稳定性发生变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamic Behavior of Doped Graphene: Impact of Heavy Dopant Atoms.

This study investigates the effect of incorporating heavy dopant atoms on the topological transitions in the energy spectrum of graphene, as well as on its thermodynamic properties. A tight-binding model is employed that incorporates a lattice composition parameter associated with the dopant's effect to obtain the electronic spectrum of graphene. Thus, the substitutional atoms in the lattice impact the electronic structure of graphene by altering the connectivity of the Dirac cones and the symmetry of the energy surface in their spectrum. The Gibbs entropy is numerically calculated from the energy surface of the electronic spectrum, and other thermodynamic properties, such as temperature, specific heat, and Helmholtz free energy, are derived from theoretical principles. The results show that topological changes induced by the heavy dopant atoms in the graphene lattice significantly affect its electronic structure and thermodynamic properties, leading to observable changes in the distances between Dirac cones, the range of the energy spectrum, entropy, positive and negative temperatures, divergences in specific heat, and instabilities within the system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信