负载PHT-427抑制剂的聚合纳米颗粒在头颈部鳞状细胞癌中的体内抗肿瘤活性。

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Drug Delivery Pub Date : 2025-12-01 Epub Date: 2025-01-09 DOI:10.1080/10717544.2024.2449376
Joaquín Yanes-Díaz, Raquel Palao-Suay, Francisca Inmaculada Camacho-Castañeda, Juan Riestra-Ayora, María Rosa Aguilar, Ricardo Sanz-Fernández, Carolina Sánchez-Rodríguez
{"title":"负载PHT-427抑制剂的聚合纳米颗粒在头颈部鳞状细胞癌中的体内抗肿瘤活性。","authors":"Joaquín Yanes-Díaz, Raquel Palao-Suay, Francisca Inmaculada Camacho-Castañeda, Juan Riestra-Ayora, María Rosa Aguilar, Ricardo Sanz-Fernández, Carolina Sánchez-Rodríguez","doi":"10.1080/10717544.2024.2449376","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies on head and neck squamous cell carcinoma (HNSCC) tumorigenesis have revealed several dysregulated molecular pathways. The phosphatidylinositol-3-kinase (PI3K) signaling pathway is frequently activated in HNSCC, making it an attractive target for therapies. PHT-427 is a dual inhibitor of PI3K and the mammalian target of AKT/PDK1. This study evaluates the anticancer efficacy of the inhibitor PHT-427 loaded into polymeric nanoparticles (NP) based on α-TOS (NP-427) administered by intratumoral injection into a hypopharyngeal squamous cell carcinoma (FaDu cells) heterotopic xenograft mouse model. The nanocarrier system, based on block copolymers of N-vinylpyrrolidone (VP) and a methacrylic derivative of α-TOS (MTOS), was synthesized, and PHT-427 was loaded into the delivery system. First, we evaluated the effect of NP-427 on tumor growth by measuring tumor volume, mouse weight, survival, and the development of tumor ulceration and necrosis. In addition, we measured PI3KCA/AKT/PDK1 gene expression, PI3KCA/AKT/PDK1 protein levels, Epidermal Growth Factor Receptor (EGFR), and angiogenesis in the tumor tissue. PHT-427 encapsulation increased drug efficacy and safety, as demonstrated by decreased tumor volume, reduced PI3K/AKT/PDK1 pathway expression, and improved antitumor activity and necrosis induction in the mouse xenograft model. EGFR and angiogenesis marker (Factor VIII) expression were significantly lower in the NP-427 group compared to other experimental groups. Administration of encapsulated PHT-427 at the tumor sites proves promising for HNSCC therapy.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"32 1","pages":"2449376"},"PeriodicalIF":6.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727052/pdf/","citationCount":"0","resultStr":"{\"title\":\"In vivo antitumor activity of PHT-427 inhibitor-loaded polymeric nanoparticles in head and neck squamous cell carcinoma.\",\"authors\":\"Joaquín Yanes-Díaz, Raquel Palao-Suay, Francisca Inmaculada Camacho-Castañeda, Juan Riestra-Ayora, María Rosa Aguilar, Ricardo Sanz-Fernández, Carolina Sánchez-Rodríguez\",\"doi\":\"10.1080/10717544.2024.2449376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent studies on head and neck squamous cell carcinoma (HNSCC) tumorigenesis have revealed several dysregulated molecular pathways. The phosphatidylinositol-3-kinase (PI3K) signaling pathway is frequently activated in HNSCC, making it an attractive target for therapies. PHT-427 is a dual inhibitor of PI3K and the mammalian target of AKT/PDK1. This study evaluates the anticancer efficacy of the inhibitor PHT-427 loaded into polymeric nanoparticles (NP) based on α-TOS (NP-427) administered by intratumoral injection into a hypopharyngeal squamous cell carcinoma (FaDu cells) heterotopic xenograft mouse model. The nanocarrier system, based on block copolymers of N-vinylpyrrolidone (VP) and a methacrylic derivative of α-TOS (MTOS), was synthesized, and PHT-427 was loaded into the delivery system. First, we evaluated the effect of NP-427 on tumor growth by measuring tumor volume, mouse weight, survival, and the development of tumor ulceration and necrosis. In addition, we measured PI3KCA/AKT/PDK1 gene expression, PI3KCA/AKT/PDK1 protein levels, Epidermal Growth Factor Receptor (EGFR), and angiogenesis in the tumor tissue. PHT-427 encapsulation increased drug efficacy and safety, as demonstrated by decreased tumor volume, reduced PI3K/AKT/PDK1 pathway expression, and improved antitumor activity and necrosis induction in the mouse xenograft model. EGFR and angiogenesis marker (Factor VIII) expression were significantly lower in the NP-427 group compared to other experimental groups. Administration of encapsulated PHT-427 at the tumor sites proves promising for HNSCC therapy.</p>\",\"PeriodicalId\":11679,\"journal\":{\"name\":\"Drug Delivery\",\"volume\":\"32 1\",\"pages\":\"2449376\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727052/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10717544.2024.2449376\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2024.2449376","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

最近对头颈部鳞状细胞癌(HNSCC)发生的研究揭示了几种失调的分子途径。磷脂酰肌醇-3激酶(PI3K)信号通路在HNSCC中经常被激活,使其成为一个有吸引力的治疗靶点。PHT-427是PI3K的双重抑制剂和AKT/PDK1的哺乳动物靶点。本研究以α-TOS (NP-427)为基础,将抑制剂PHT-427负载到聚合物纳米颗粒(NP)中,瘤内注射到下咽鳞状细胞癌(FaDu细胞)异位异种移植小鼠模型中,观察其抗癌效果。以n -乙烯基吡咯烷酮(VP)嵌段共聚物和α-TOS的甲基丙烯酸衍生物(MTOS)为共聚物,合成了纳米载体体系,并将PHT-427装载到递送体系中。首先,我们通过测量肿瘤体积、小鼠体重、存活率以及肿瘤溃疡和坏死的发展来评估NP-427对肿瘤生长的影响。此外,我们还测量了肿瘤组织中PI3KCA/AKT/PDK1基因表达、PI3KCA/AKT/PDK1蛋白水平、表皮生长因子受体(EGFR)和血管生成。在小鼠异种移植瘤模型中,PHT-427包封提高了药物的有效性和安全性,结果表明:肿瘤体积减小,PI3K/AKT/PDK1通路表达降低,抗肿瘤活性和坏死诱导能力增强。与其他实验组相比,NP-427组EGFR和血管生成标志物(Factor VIII)的表达明显降低。在肿瘤部位应用包封的PHT-427治疗HNSCC被证明是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In vivo antitumor activity of PHT-427 inhibitor-loaded polymeric nanoparticles in head and neck squamous cell carcinoma.

Recent studies on head and neck squamous cell carcinoma (HNSCC) tumorigenesis have revealed several dysregulated molecular pathways. The phosphatidylinositol-3-kinase (PI3K) signaling pathway is frequently activated in HNSCC, making it an attractive target for therapies. PHT-427 is a dual inhibitor of PI3K and the mammalian target of AKT/PDK1. This study evaluates the anticancer efficacy of the inhibitor PHT-427 loaded into polymeric nanoparticles (NP) based on α-TOS (NP-427) administered by intratumoral injection into a hypopharyngeal squamous cell carcinoma (FaDu cells) heterotopic xenograft mouse model. The nanocarrier system, based on block copolymers of N-vinylpyrrolidone (VP) and a methacrylic derivative of α-TOS (MTOS), was synthesized, and PHT-427 was loaded into the delivery system. First, we evaluated the effect of NP-427 on tumor growth by measuring tumor volume, mouse weight, survival, and the development of tumor ulceration and necrosis. In addition, we measured PI3KCA/AKT/PDK1 gene expression, PI3KCA/AKT/PDK1 protein levels, Epidermal Growth Factor Receptor (EGFR), and angiogenesis in the tumor tissue. PHT-427 encapsulation increased drug efficacy and safety, as demonstrated by decreased tumor volume, reduced PI3K/AKT/PDK1 pathway expression, and improved antitumor activity and necrosis induction in the mouse xenograft model. EGFR and angiogenesis marker (Factor VIII) expression were significantly lower in the NP-427 group compared to other experimental groups. Administration of encapsulated PHT-427 at the tumor sites proves promising for HNSCC therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Delivery
Drug Delivery 医学-药学
CiteScore
11.80
自引率
5.00%
发文量
250
审稿时长
3.3 months
期刊介绍: Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信