Verónica Mäki-Marttunen, Alexandra Velinov, Sander Nieuwenhuis
{"title":"低频脑电图相位对外界刺激的夹带强度与大脑内部状态的波动有关。","authors":"Verónica Mäki-Marttunen, Alexandra Velinov, Sander Nieuwenhuis","doi":"10.1523/ENEURO.0064-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The brain attends to environmental rhythms by aligning the phase of internal oscillations. However, the factors underlying fluctuations in the strength of this phase entrainment remain largely unknown. In the present study, we examined whether the strength of low-frequency electroencephalography (EEG) phase entrainment to rhythmic stimulus sequences varied with the pupil size and posterior alpha-band power, thought to reflect the arousal level and excitability of posterior cortical brain areas, respectively. We recorded the pupil size and scalp EEG while participants carried out an intermodal selective attention task, in which they were instructed to attend to a rhythmic sequence of visual or auditory stimuli and ignore the other perceptual modality. As expected, intertrial phase coherence (ITC), a measure of entrainment strength, was larger for the task-relevant than for the task-irrelevant modality. Across the experiment, the pupil size and posterior alpha power were strongly linked with each other. Interestingly, ITC tracked both variables: larger pupil size was associated with a selective increase in entrainment to the task-relevant stimulus sequence, whereas larger posterior alpha power was associated with a decrease in phase entrainment to both the task-relevant and task-irrelevant stimulus sequences. Exploratory analyses showed that a temporal relation between ITC and posterior alpha power emerged in the time periods around pupil maxima and pupil minima. These results indicate that endogenous sources contribute distinctly to the fluctuations of EEG phase entrainment.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772043/pdf/","citationCount":"0","resultStr":"{\"title\":\"Strength of Low-Frequency EEG Phase Entrainment to External Stimuli Is Associated with Fluctuations in the Brain's Internal State.\",\"authors\":\"Verónica Mäki-Marttunen, Alexandra Velinov, Sander Nieuwenhuis\",\"doi\":\"10.1523/ENEURO.0064-24.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The brain attends to environmental rhythms by aligning the phase of internal oscillations. However, the factors underlying fluctuations in the strength of this phase entrainment remain largely unknown. In the present study, we examined whether the strength of low-frequency electroencephalography (EEG) phase entrainment to rhythmic stimulus sequences varied with the pupil size and posterior alpha-band power, thought to reflect the arousal level and excitability of posterior cortical brain areas, respectively. We recorded the pupil size and scalp EEG while participants carried out an intermodal selective attention task, in which they were instructed to attend to a rhythmic sequence of visual or auditory stimuli and ignore the other perceptual modality. As expected, intertrial phase coherence (ITC), a measure of entrainment strength, was larger for the task-relevant than for the task-irrelevant modality. Across the experiment, the pupil size and posterior alpha power were strongly linked with each other. Interestingly, ITC tracked both variables: larger pupil size was associated with a selective increase in entrainment to the task-relevant stimulus sequence, whereas larger posterior alpha power was associated with a decrease in phase entrainment to both the task-relevant and task-irrelevant stimulus sequences. Exploratory analyses showed that a temporal relation between ITC and posterior alpha power emerged in the time periods around pupil maxima and pupil minima. These results indicate that endogenous sources contribute distinctly to the fluctuations of EEG phase entrainment.</p>\",\"PeriodicalId\":11617,\"journal\":{\"name\":\"eNeuro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772043/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eNeuro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/ENEURO.0064-24.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0064-24.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Strength of Low-Frequency EEG Phase Entrainment to External Stimuli Is Associated with Fluctuations in the Brain's Internal State.
The brain attends to environmental rhythms by aligning the phase of internal oscillations. However, the factors underlying fluctuations in the strength of this phase entrainment remain largely unknown. In the present study, we examined whether the strength of low-frequency electroencephalography (EEG) phase entrainment to rhythmic stimulus sequences varied with the pupil size and posterior alpha-band power, thought to reflect the arousal level and excitability of posterior cortical brain areas, respectively. We recorded the pupil size and scalp EEG while participants carried out an intermodal selective attention task, in which they were instructed to attend to a rhythmic sequence of visual or auditory stimuli and ignore the other perceptual modality. As expected, intertrial phase coherence (ITC), a measure of entrainment strength, was larger for the task-relevant than for the task-irrelevant modality. Across the experiment, the pupil size and posterior alpha power were strongly linked with each other. Interestingly, ITC tracked both variables: larger pupil size was associated with a selective increase in entrainment to the task-relevant stimulus sequence, whereas larger posterior alpha power was associated with a decrease in phase entrainment to both the task-relevant and task-irrelevant stimulus sequences. Exploratory analyses showed that a temporal relation between ITC and posterior alpha power emerged in the time periods around pupil maxima and pupil minima. These results indicate that endogenous sources contribute distinctly to the fluctuations of EEG phase entrainment.
期刊介绍:
An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.