使用监督机器学习分析操作性自我管理行为:使用DeepLabCut和简单行为分析(SimBA)进行视频采集和姿态估计分析的协议。

IF 2.7 3区 医学 Q3 NEUROSCIENCES
eNeuro Pub Date : 2025-02-06 Print Date: 2025-02-01 DOI:10.1523/ENEURO.0031-24.2024
Leo F Pereira Sanabria, Luciano S Voutour, Victoria J Kaufman, Christopher A Reeves, Aneesh S Bal, Fidel Maureira, Amy A Arguello
{"title":"使用监督机器学习分析操作性自我管理行为:使用DeepLabCut和简单行为分析(SimBA)进行视频采集和姿态估计分析的协议。","authors":"Leo F Pereira Sanabria, Luciano S Voutour, Victoria J Kaufman, Christopher A Reeves, Aneesh S Bal, Fidel Maureira, Amy A Arguello","doi":"10.1523/ENEURO.0031-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The use of supervised machine learning to approximate poses in video recordings allows for rapid and efficient analysis of complex behavioral profiles. Currently, there are limited protocols for automated analysis of operant self-administration behavior. We provide a methodology to (1) obtain videos of training sessions via Raspberry Pi microcomputers or GoPro cameras, (2) obtain pose estimation data using the supervised machine learning software packages DeepLabCut (DLC) and Simple Behavioral Analysis (SimBA) with a local high-performance computer cluster, (3) compare standard Med-PC lever response versus quadrant time data generated from pose estimation regions of interest, and (4) generate predictive behavioral classifiers. Overall, we demonstrate proof of concept to use pose estimation outputs from DLC to both generate quadrant time results and obtain behavioral classifiers from SimBA during operant training phases.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826966/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analysis of Operant Self-administration Behaviors with Supervised Machine Learning: Protocol for Video Acquisition and Pose Estimation Analysis Using DeepLabCut and Simple Behavioral Analysis.\",\"authors\":\"Leo F Pereira Sanabria, Luciano S Voutour, Victoria J Kaufman, Christopher A Reeves, Aneesh S Bal, Fidel Maureira, Amy A Arguello\",\"doi\":\"10.1523/ENEURO.0031-24.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of supervised machine learning to approximate poses in video recordings allows for rapid and efficient analysis of complex behavioral profiles. Currently, there are limited protocols for automated analysis of operant self-administration behavior. We provide a methodology to (1) obtain videos of training sessions via Raspberry Pi microcomputers or GoPro cameras, (2) obtain pose estimation data using the supervised machine learning software packages DeepLabCut (DLC) and Simple Behavioral Analysis (SimBA) with a local high-performance computer cluster, (3) compare standard Med-PC lever response versus quadrant time data generated from pose estimation regions of interest, and (4) generate predictive behavioral classifiers. Overall, we demonstrate proof of concept to use pose estimation outputs from DLC to both generate quadrant time results and obtain behavioral classifiers from SimBA during operant training phases.</p>\",\"PeriodicalId\":11617,\"journal\":{\"name\":\"eNeuro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826966/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eNeuro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/ENEURO.0031-24.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0031-24.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

使用监督机器学习来近似视频记录中的姿势,可以快速有效地分析复杂的行为特征。目前,对操作性自我给药行为的自动化分析方案有限。我们提供的方法包括:1)通过树莓派(Raspberry Pi)微型计算机或GoPros获取训练课程视频;2)使用本地高性能计算机集群使用监督机器学习软件包DeepLabCut (DLC)和Simple Behavioral Analysis (SimBA)获得姿态估计数据;3)比较标准MedPC杠杆响应与感兴趣姿态估计区域生成的象限时间数据;4)生成预测行为分类器。总体而言,我们演示了在操作训练阶段使用DLC的姿态估计输出来生成象限时间结果并从SimBA获得行为分类器的概念验证。物质使用障碍是由复杂的行为组成,可促进药物寻求和服用的慢性复发。啮齿类动物的操作性自我给药通常被用作检查药物服用,寻求和渴望行为的临床前工具。我们提供了获取自我管理行为视频的协议,并使用监督学习软件DeepLabCut和Simple behavioral Analysis (SimBA)获得姿态估计输出和独特的行为分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Operant Self-administration Behaviors with Supervised Machine Learning: Protocol for Video Acquisition and Pose Estimation Analysis Using DeepLabCut and Simple Behavioral Analysis.

The use of supervised machine learning to approximate poses in video recordings allows for rapid and efficient analysis of complex behavioral profiles. Currently, there are limited protocols for automated analysis of operant self-administration behavior. We provide a methodology to (1) obtain videos of training sessions via Raspberry Pi microcomputers or GoPro cameras, (2) obtain pose estimation data using the supervised machine learning software packages DeepLabCut (DLC) and Simple Behavioral Analysis (SimBA) with a local high-performance computer cluster, (3) compare standard Med-PC lever response versus quadrant time data generated from pose estimation regions of interest, and (4) generate predictive behavioral classifiers. Overall, we demonstrate proof of concept to use pose estimation outputs from DLC to both generate quadrant time results and obtain behavioral classifiers from SimBA during operant training phases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信