Valentyna Kostiuk, Rakib Kabir, Kaitlin Levangie, Stefany Empke, Kimberly Morgan, Nick D L Owens, C Patrick Lusk, Mustafa K Khokha
{"title":"Nup107通过阻止pri-miRNA 427过早的核输出来促进母代向合子的转变。","authors":"Valentyna Kostiuk, Rakib Kabir, Kaitlin Levangie, Stefany Empke, Kimberly Morgan, Nick D L Owens, C Patrick Lusk, Mustafa K Khokha","doi":"10.1242/dev.202865","DOIUrl":null,"url":null,"abstract":"<p><p>Emerging evidence suggests that the nuclear pore complex can have unique compositions and distinct nucleoporin functions in different cells. Here, we show that Nup107, a key component of the NPC scaffold, varies in expression over development: it is expressed at higher levels in the blastula compared to the gastrula, suggesting a crucial role before gastrulation in Xenopus. We find that depletion of Nup107 affects the differentiation of the early germ layers leading to an expansion of the ectoderm at the expense of endoderm and mesoderm. By analyzing an RNA-sequencing time course, we observed that depletion of Nup107 affects the maternal-zygotic transition by delaying the degradation of maternal transcripts that occurs as zygotic transcription begins. The transcripts are enriched in recognition sites for miR427, a conserved microRNA that destabilizes maternal transcripts including REST, which encodes a Kruppel-type zinc-finger transcription factor that we demonstrate is crucial for ectodermal cell fates. Mechanistically, we show that Nup107 is required to prevent the premature export of pri-miR427 transcript before processing. Nup107 depletion leads to the reduced production of mature miR427 and maternal transcript stabilization. We conclude that high levels of Nup107 in the early embryo are crucial for the nuclear retention and subsequent processing of pri-miR427 transcripts that is required for timely maternal RNA clearance to enable gastrulation.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829755/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nup107 contributes to the maternal-to-zygotic transition by preventing the premature nuclear export of pri-miR427.\",\"authors\":\"Valentyna Kostiuk, Rakib Kabir, Kaitlin Levangie, Stefany Empke, Kimberly Morgan, Nick D L Owens, C Patrick Lusk, Mustafa K Khokha\",\"doi\":\"10.1242/dev.202865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Emerging evidence suggests that the nuclear pore complex can have unique compositions and distinct nucleoporin functions in different cells. Here, we show that Nup107, a key component of the NPC scaffold, varies in expression over development: it is expressed at higher levels in the blastula compared to the gastrula, suggesting a crucial role before gastrulation in Xenopus. We find that depletion of Nup107 affects the differentiation of the early germ layers leading to an expansion of the ectoderm at the expense of endoderm and mesoderm. By analyzing an RNA-sequencing time course, we observed that depletion of Nup107 affects the maternal-zygotic transition by delaying the degradation of maternal transcripts that occurs as zygotic transcription begins. The transcripts are enriched in recognition sites for miR427, a conserved microRNA that destabilizes maternal transcripts including REST, which encodes a Kruppel-type zinc-finger transcription factor that we demonstrate is crucial for ectodermal cell fates. Mechanistically, we show that Nup107 is required to prevent the premature export of pri-miR427 transcript before processing. Nup107 depletion leads to the reduced production of mature miR427 and maternal transcript stabilization. We conclude that high levels of Nup107 in the early embryo are crucial for the nuclear retention and subsequent processing of pri-miR427 transcripts that is required for timely maternal RNA clearance to enable gastrulation.</p>\",\"PeriodicalId\":11375,\"journal\":{\"name\":\"Development\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829755/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/dev.202865\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.202865","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Nup107 contributes to the maternal-to-zygotic transition by preventing the premature nuclear export of pri-miR427.
Emerging evidence suggests that the nuclear pore complex can have unique compositions and distinct nucleoporin functions in different cells. Here, we show that Nup107, a key component of the NPC scaffold, varies in expression over development: it is expressed at higher levels in the blastula compared to the gastrula, suggesting a crucial role before gastrulation in Xenopus. We find that depletion of Nup107 affects the differentiation of the early germ layers leading to an expansion of the ectoderm at the expense of endoderm and mesoderm. By analyzing an RNA-sequencing time course, we observed that depletion of Nup107 affects the maternal-zygotic transition by delaying the degradation of maternal transcripts that occurs as zygotic transcription begins. The transcripts are enriched in recognition sites for miR427, a conserved microRNA that destabilizes maternal transcripts including REST, which encodes a Kruppel-type zinc-finger transcription factor that we demonstrate is crucial for ectodermal cell fates. Mechanistically, we show that Nup107 is required to prevent the premature export of pri-miR427 transcript before processing. Nup107 depletion leads to the reduced production of mature miR427 and maternal transcript stabilization. We conclude that high levels of Nup107 in the early embryo are crucial for the nuclear retention and subsequent processing of pri-miR427 transcripts that is required for timely maternal RNA clearance to enable gastrulation.
期刊介绍:
Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community.
Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication.
To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.