Demin Guo, Shengfang Zhao, Jie Chen, Shuhui Han, Yangtao Li, Yu Chen, Shengbiao Hu, Yibo Hu
{"title":"异染色质蛋白激活草青霉淀粉酶表达途径及其在重组蛋白表达中的应用。","authors":"Demin Guo, Shengfang Zhao, Jie Chen, Shuhui Han, Yangtao Li, Yu Chen, Shengbiao Hu, Yibo Hu","doi":"10.1007/s00284-024-04058-0","DOIUrl":null,"url":null,"abstract":"<p><p>Remodelling regulatory pathways to directionally increase the efficiency of specific promoters in chassis cells is an effective strategy for the rational construction of expression systems. However, the repeated utilization of one regulator to modify the host cell to improve expression motif efficiency has a limited effect. Therefore, it is preferable to identify new regulatory factors to activate specific pathways and thus further improve the efficiency of target elements. Heterochromatin protein 1 (HP1) is considered a main factor responsible for heterochromatin maintenance; it binds DNA and thus forms a tight structure to repress gene expression in fungi. This study revealed that the overexpression of HepA (a homologue of HP1) increased amylase expression in Penicillium oxalicum. Furthermore, HepA was overexpressed in two engineered strains in which the endoglucanase TaEG and amylase Amy15B were recombinantly expressed under the control of the amylase promoter Pamy15A, resulting in increased production of these two enzymes. Therefore, HepA could be used as a novel facilitator to modify Penicillium chassis cells, in which the efficiency of expression motifs located in the amylase pathway can be further strengthened.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":"82 2","pages":"75"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterochromatin Protein Activates the Amylase Expression Pathway and Its Application to Recombinant Protein Expression in Penicillium oxalicum.\",\"authors\":\"Demin Guo, Shengfang Zhao, Jie Chen, Shuhui Han, Yangtao Li, Yu Chen, Shengbiao Hu, Yibo Hu\",\"doi\":\"10.1007/s00284-024-04058-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Remodelling regulatory pathways to directionally increase the efficiency of specific promoters in chassis cells is an effective strategy for the rational construction of expression systems. However, the repeated utilization of one regulator to modify the host cell to improve expression motif efficiency has a limited effect. Therefore, it is preferable to identify new regulatory factors to activate specific pathways and thus further improve the efficiency of target elements. Heterochromatin protein 1 (HP1) is considered a main factor responsible for heterochromatin maintenance; it binds DNA and thus forms a tight structure to repress gene expression in fungi. This study revealed that the overexpression of HepA (a homologue of HP1) increased amylase expression in Penicillium oxalicum. Furthermore, HepA was overexpressed in two engineered strains in which the endoglucanase TaEG and amylase Amy15B were recombinantly expressed under the control of the amylase promoter Pamy15A, resulting in increased production of these two enzymes. Therefore, HepA could be used as a novel facilitator to modify Penicillium chassis cells, in which the efficiency of expression motifs located in the amylase pathway can be further strengthened.</p>\",\"PeriodicalId\":11360,\"journal\":{\"name\":\"Current Microbiology\",\"volume\":\"82 2\",\"pages\":\"75\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00284-024-04058-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-024-04058-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Heterochromatin Protein Activates the Amylase Expression Pathway and Its Application to Recombinant Protein Expression in Penicillium oxalicum.
Remodelling regulatory pathways to directionally increase the efficiency of specific promoters in chassis cells is an effective strategy for the rational construction of expression systems. However, the repeated utilization of one regulator to modify the host cell to improve expression motif efficiency has a limited effect. Therefore, it is preferable to identify new regulatory factors to activate specific pathways and thus further improve the efficiency of target elements. Heterochromatin protein 1 (HP1) is considered a main factor responsible for heterochromatin maintenance; it binds DNA and thus forms a tight structure to repress gene expression in fungi. This study revealed that the overexpression of HepA (a homologue of HP1) increased amylase expression in Penicillium oxalicum. Furthermore, HepA was overexpressed in two engineered strains in which the endoglucanase TaEG and amylase Amy15B were recombinantly expressed under the control of the amylase promoter Pamy15A, resulting in increased production of these two enzymes. Therefore, HepA could be used as a novel facilitator to modify Penicillium chassis cells, in which the efficiency of expression motifs located in the amylase pathway can be further strengthened.
期刊介绍:
Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment.
Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas:
physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.