全氟辛烷磺酸盐与常用抗生素相互作用可引起非洲爪蟾发育异常和致死性。

IF 2 3区 生物学 Q2 ANATOMY & MORPHOLOGY
Emma Harrison, Shreya Chattapadhyay, Ganad Neka, Maya Baskin, Nora Richmond, Quynh Nguyen, Isabel Wade, Arya Anekal, Olive Lucanish, John J Young
{"title":"全氟辛烷磺酸盐与常用抗生素相互作用可引起非洲爪蟾发育异常和致死性。","authors":"Emma Harrison, Shreya Chattapadhyay, Ganad Neka, Maya Baskin, Nora Richmond, Quynh Nguyen, Isabel Wade, Arya Anekal, Olive Lucanish, John J Young","doi":"10.1002/dvdy.764","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Perfluoroalkyl substances (PFAS) are persistent environmental contaminants previously used for industrial purposes as a non-stick coating and flame retardant. The stability of these molecules prevents their breakdown, which results in ground water contamination across the globe. Perfluoroalkyl substances molecules are known to bioaccumulate in various organisms. However, the health consequences remain unclear due to the large number of molecules in the PFAS family and different effects on various tissues. Here, we use the frog Xenopus laevis to investigate the developmental consequences of exposure to the PFAS molecule perfluoro-octanoic sulfonate (PFOS).</p><p><strong>Results: </strong>We find that exposure to high levels of PFOS results in significant axial shortening of developing tadpoles. Further, we find that PFOS exposure results in a dose-dependent formation of a cellular mass in the dorsal fin. Unexpectedly, we found that these developmental phenotypes are exacerbated upon co-exposure with commonly used antibiotics. Specifically, PFOS and gentamicin co-treatment results in increased apoptosis, loss of cellular integrity, and increased overall lethality.</p><p><strong>Conclusions: </strong>Our results suggest a mechanism whereby gentamicin reaches levels that are toxic to mitochondria only in the presence of PFOS. These findings add to our understanding of PFOS exposure to vertebrate development and present an added concern with potential interactions with antibiotics.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction between perfluoro-octanoic sulfonate and common antibiotics induces developmental anomalies and lethality in Xenopus laevis.\",\"authors\":\"Emma Harrison, Shreya Chattapadhyay, Ganad Neka, Maya Baskin, Nora Richmond, Quynh Nguyen, Isabel Wade, Arya Anekal, Olive Lucanish, John J Young\",\"doi\":\"10.1002/dvdy.764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Perfluoroalkyl substances (PFAS) are persistent environmental contaminants previously used for industrial purposes as a non-stick coating and flame retardant. The stability of these molecules prevents their breakdown, which results in ground water contamination across the globe. Perfluoroalkyl substances molecules are known to bioaccumulate in various organisms. However, the health consequences remain unclear due to the large number of molecules in the PFAS family and different effects on various tissues. Here, we use the frog Xenopus laevis to investigate the developmental consequences of exposure to the PFAS molecule perfluoro-octanoic sulfonate (PFOS).</p><p><strong>Results: </strong>We find that exposure to high levels of PFOS results in significant axial shortening of developing tadpoles. Further, we find that PFOS exposure results in a dose-dependent formation of a cellular mass in the dorsal fin. Unexpectedly, we found that these developmental phenotypes are exacerbated upon co-exposure with commonly used antibiotics. Specifically, PFOS and gentamicin co-treatment results in increased apoptosis, loss of cellular integrity, and increased overall lethality.</p><p><strong>Conclusions: </strong>Our results suggest a mechanism whereby gentamicin reaches levels that are toxic to mitochondria only in the presence of PFOS. These findings add to our understanding of PFOS exposure to vertebrate development and present an added concern with potential interactions with antibiotics.</p>\",\"PeriodicalId\":11247,\"journal\":{\"name\":\"Developmental Dynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/dvdy.764\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/dvdy.764","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:全氟烷基物质(PFAS)是一种持久性环境污染物,以前用作工业用途的不粘涂层和阻燃剂。这些分子的稳定性阻止了它们的分解,从而导致全球地下水污染。已知全氟烷基物质分子在各种生物体中具有生物蓄积性。然而,由于PFAS家族分子数量众多,对不同组织的影响不同,其健康后果尚不清楚。在这里,我们使用非洲爪蟾来研究暴露于全氟辛烷磺酸(PFOS)分子的发育后果。结果:我们发现暴露于高水平的全氟辛烷磺酸导致发育中的蝌蚪显著的轴缩短。此外,我们发现全氟辛烷磺酸暴露导致背鳍细胞团块的剂量依赖性形成。出乎意料的是,我们发现这些发育表型在与常用抗生素共暴露时加剧。具体来说,全氟辛烷磺酸和庆大霉素联合治疗导致细胞凋亡增加、细胞完整性丧失和总体致死率增加。结论:我们的研究结果表明,庆大霉素只有在全氟辛烷磺酸存在的情况下才能达到对线粒体有毒的水平。这些发现增加了我们对全氟辛烷磺酸暴露于脊椎动物发育的理解,并提出了与抗生素潜在相互作用的额外关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interaction between perfluoro-octanoic sulfonate and common antibiotics induces developmental anomalies and lethality in Xenopus laevis.

Background: Perfluoroalkyl substances (PFAS) are persistent environmental contaminants previously used for industrial purposes as a non-stick coating and flame retardant. The stability of these molecules prevents their breakdown, which results in ground water contamination across the globe. Perfluoroalkyl substances molecules are known to bioaccumulate in various organisms. However, the health consequences remain unclear due to the large number of molecules in the PFAS family and different effects on various tissues. Here, we use the frog Xenopus laevis to investigate the developmental consequences of exposure to the PFAS molecule perfluoro-octanoic sulfonate (PFOS).

Results: We find that exposure to high levels of PFOS results in significant axial shortening of developing tadpoles. Further, we find that PFOS exposure results in a dose-dependent formation of a cellular mass in the dorsal fin. Unexpectedly, we found that these developmental phenotypes are exacerbated upon co-exposure with commonly used antibiotics. Specifically, PFOS and gentamicin co-treatment results in increased apoptosis, loss of cellular integrity, and increased overall lethality.

Conclusions: Our results suggest a mechanism whereby gentamicin reaches levels that are toxic to mitochondria only in the presence of PFOS. These findings add to our understanding of PFOS exposure to vertebrate development and present an added concern with potential interactions with antibiotics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Developmental Dynamics
Developmental Dynamics 生物-发育生物学
CiteScore
5.10
自引率
8.00%
发文量
116
审稿时长
3-8 weeks
期刊介绍: Developmental Dynamics, is an official publication of the American Association for Anatomy. This peer reviewed journal provides an international forum for publishing novel discoveries, using any model system, that advances our understanding of development, morphology, form and function, evolution, disease, stem cells, repair and regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信