in-12缺口在线虫锚定细胞增殖中的作用。

IF 1.8 4区 生物学 Q3 BIOLOGY
Biology Open Pub Date : 2024-12-15 Epub Date: 2024-12-30 DOI:10.1242/bio.061816
Alex Hajnal, Ting Deng, Evelyn Lattmann
{"title":"in-12缺口在线虫锚定细胞增殖中的作用。","authors":"Alex Hajnal, Ting Deng, Evelyn Lattmann","doi":"10.1242/bio.061816","DOIUrl":null,"url":null,"abstract":"<p><p>The gonadal anchor cell (AC) is an essential organizer for the development of the egg-laying organ in the C. elegans hermaphrodite. Recent work has investigated the mechanisms that control the quiescent state the AC adopts while fulfilling its functions. In this context, the transcription factors EGL-43 and NHR-67 are required to maintain the G1 cell cycle arrest of the AC and prevent proliferation. While NHR-67 acts primarily by up-regulating the CDK inhibitor CKI-1, the role of EGL-43 in this process has been subject to debate. Deng et al. (2020) reported that inhibition of the notch receptor lin-12 by RNAi partially suppressed the AC proliferation phenotype caused by egl-43 RNAi. By contrast, Martinez et al. (2022) found that down-regulation of LIN-12 NOTCH via the auxin-inducible degradation system did not reduce AC proliferation. To resolve this issue, we performed egl-43 RNAi in the background of a lin-12 null allele and observed a similar suppression of AC proliferation as reported previously by Deng et al. (2020). Hence, AC proliferation caused by the downregulation of egl-43 partially depends on LIN-12 NOTCH signaling.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":"13 12","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708767/pdf/","citationCount":"0","resultStr":"{\"title\":\"The role of lin-12 notch in C. elegans anchor cell proliferation.\",\"authors\":\"Alex Hajnal, Ting Deng, Evelyn Lattmann\",\"doi\":\"10.1242/bio.061816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The gonadal anchor cell (AC) is an essential organizer for the development of the egg-laying organ in the C. elegans hermaphrodite. Recent work has investigated the mechanisms that control the quiescent state the AC adopts while fulfilling its functions. In this context, the transcription factors EGL-43 and NHR-67 are required to maintain the G1 cell cycle arrest of the AC and prevent proliferation. While NHR-67 acts primarily by up-regulating the CDK inhibitor CKI-1, the role of EGL-43 in this process has been subject to debate. Deng et al. (2020) reported that inhibition of the notch receptor lin-12 by RNAi partially suppressed the AC proliferation phenotype caused by egl-43 RNAi. By contrast, Martinez et al. (2022) found that down-regulation of LIN-12 NOTCH via the auxin-inducible degradation system did not reduce AC proliferation. To resolve this issue, we performed egl-43 RNAi in the background of a lin-12 null allele and observed a similar suppression of AC proliferation as reported previously by Deng et al. (2020). Hence, AC proliferation caused by the downregulation of egl-43 partially depends on LIN-12 NOTCH signaling.</p>\",\"PeriodicalId\":9216,\"journal\":{\"name\":\"Biology Open\",\"volume\":\"13 12\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708767/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Open\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/bio.061816\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Open","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.061816","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

性腺锚细胞(AC)是秀丽隐杆线虫雌雄同体产卵器官发育的重要组织者。最近的工作已经研究了控制AC在履行其功能时采用的静态状态的机制。在这种情况下,需要转录因子EGL-43和NHR-67来维持AC的G1细胞周期阻滞和防止增殖。虽然NHR-67主要通过上调CDK抑制剂CKI-1起作用,但EGL-43在这一过程中的作用一直存在争议。Deng等人(2020)报道RNAi抑制notch受体lin-12部分抑制egl-43 RNAi引起的AC增殖表型。相比之下,Martinez et al.(2022)发现通过生长素诱导的降解系统下调LIN-12 NOTCH并没有减少AC增殖。为了解决这个问题,我们在lin-12空等位基因的背景下进行了egl-43 RNAi,并观察到与Deng等人(2020)先前报道的类似的AC增殖抑制。因此,egl-43下调引起的AC增殖部分依赖于LIN-12 NOTCH信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The role of lin-12 notch in C. elegans anchor cell proliferation.

The gonadal anchor cell (AC) is an essential organizer for the development of the egg-laying organ in the C. elegans hermaphrodite. Recent work has investigated the mechanisms that control the quiescent state the AC adopts while fulfilling its functions. In this context, the transcription factors EGL-43 and NHR-67 are required to maintain the G1 cell cycle arrest of the AC and prevent proliferation. While NHR-67 acts primarily by up-regulating the CDK inhibitor CKI-1, the role of EGL-43 in this process has been subject to debate. Deng et al. (2020) reported that inhibition of the notch receptor lin-12 by RNAi partially suppressed the AC proliferation phenotype caused by egl-43 RNAi. By contrast, Martinez et al. (2022) found that down-regulation of LIN-12 NOTCH via the auxin-inducible degradation system did not reduce AC proliferation. To resolve this issue, we performed egl-43 RNAi in the background of a lin-12 null allele and observed a similar suppression of AC proliferation as reported previously by Deng et al. (2020). Hence, AC proliferation caused by the downregulation of egl-43 partially depends on LIN-12 NOTCH signaling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology Open
Biology Open BIOLOGY-
CiteScore
3.90
自引率
0.00%
发文量
162
审稿时长
8 weeks
期刊介绍: Biology Open (BiO) is an online Open Access journal that publishes peer-reviewed original research across all aspects of the biological sciences. BiO aims to provide rapid publication for scientifically sound observations and valid conclusions, without a requirement for perceived impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信